Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 5: Tìm cac giá trị của x sao cho:
a. |2x - 3| = |1- x| b. x2 - 4x <= 5 c. 2x(2x - 1) <= 2x -1
a: |2x-3|=|1-x|
=>\(\left[{}\begin{matrix}2x-3=1-x\\2x-3=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+1\\2x-x=-1+3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=4\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
b: \(x^2-4x< =5\)
=>\(x^2-4x-5< =0\)
=>\(x^2-5x+x-5< =0\)
=>\(x\left(x-5\right)+\left(x-5\right)< =0\)
=>\(\left(x-5\right)\left(x+1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}x-5>=0\\x+1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=5\\x< =-1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-5< =0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =5\\x>=-1\end{matrix}\right.\)
=>-1<=x<=5
c: 2x(2x-1)<=2x-1
=>\(\left(2x-1\right)\cdot2x-\left(2x-1\right)< =0\)
=>\(\left(2x-1\right)^2< =0\)
mà \(\left(2x-1\right)^2>=0\forall x\)
nên \(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>\(x=\dfrac{1}{2}\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
a) \(\left|2x-3\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=1-x\\2x-3=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
b) \(x^2-4x\le5\)
\(\Leftrightarrow x^2-4x-5\le0\)
\(\Leftrightarrow x^2-5x+x-5\le0\)
\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)\le0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\le0\)
Đến đây dễ r
c) \(2x\left(2x-1\right)\le2x-1\)
\(\Leftrightarrow2x\left(2x-1\right)-\left(2x-1\right)\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\le0\)
Mà \(\left(2x-1\right)^2\ge0\)nên 2x - 1=0
Tìm giá trị k sao cho:
a) phương trình: 2x+k=x-1 có nghiệm x=-2
b) phương trình: (2x+1)(9x+2k)-5(x+2)=40 có nghiệm x=-2
c) phương trình:2(2x+1)+18=3(x+2)(2x+k) có nghiệm x=1
\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)
Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
----------------------giúp nha -------------------------
\(\left|2x-3\right|=\left|1-x\right|\)
\(\Rightarrow2x-3=1-x\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\frac{-4}{3}\)
\(x^2-4x\le5\)
\(\Rightarrow x^2-4x-5\le0\)
\(\Rightarrow\left(x-5\right)\left(x+1\right)\le0\)
Th1 : \(\hept{\begin{cases}x-5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x< -1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x-5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 5\\x>-1\end{cases}}}\)
1) tìm giá trị nhỏ nhất của
D= 4x-x2+3
E=2x-2x2-5
F=-x2-4x+20
2) chứng minh biểu thức không phụ vào biến
A= (2x+3)(4x2-6x+9)-2(4x3-1)
B=(x+3)3-(x+9)(x2+27)
1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất
2.
\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)
\(=8x^3-27-8x^3-2\)
\(=-29\)
\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)
\(=27-243=-216\)
sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min
\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)
\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)
dấu"=" xảy ra<=>x=2
2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)
\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2
3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)
\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2
Bài 1:
a) Ta có: \(D=-x^2+4x+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x=2
c) Ta có: \(F=-x^2-4x+20\)
\(=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)\)
\(=-\left(x+2\right)^2+24\le24\forall x\)
Dấu '=' xảy ra khi x=-2
Bài 1: Tìm nghiệm của đa thức sau:
a) A(x)=x2-4x+4
b) B(x)=2x3+x2+2x+1
c) C(x)=|2x-3|- 1/3
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
a) x2-4x+5
b) -100/(x+1)2+10
(GIÚP MÌNH CẢ 2 BÀI NHÉ! )
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)