nếu a/b+c/d=0 thì
A a/b= -c/d B a/b=c/-d C a/b= -c/d
D cả ba đều đúng
nếu a/b+c/d=0 thì
A a/b= -c/d B a/b=c/-d C a/b= -c/d
D cả ba đều đúng
giúp mình với ạ
Nếu a/b=c/d với b,d ≠ 0 thì
a. a=c b. a.c=b.d c. a.d=b.c d. b=d
Theo tính chất của tỉ lệ thức
`a/b=c/d -> a*d=b*c`
Xét các đ/án trên `-> C.`
Chứng minh rằng : Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì
a.\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\) b.\(\dfrac{a}{b}\)=\(\dfrac{a+c}{b+c}\) c.\(\dfrac{a}{c}\)=\(\dfrac{a-b}{c-d}\) d.\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
hay \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
hay \(\dfrac{a}{c}=\dfrac{a-b}{c-d}\)
cho tỉ lệ thức a+b/b+c=c+d/d+a nếu a khác c thìa a+b+c+d = ........
Câu 6. Nếu a.b = c.d thì
A. a/b
B. d/c = a/b
C. c/b = d/a
D. b/c = d/a
Cho các đường thẳng a, b, c. Nếu a // b và a c thì
A. b c.
B. b // c.
C. a // c. D. a b.
Chứng minh rằng: Nếu a + b b + c = c + d d + a (c + d ≠ 0) thì a = c hoặc a = b + c + d = 0
Chứng minh rằng nếu: \(\dfrac{A}{a}=\dfrac{B}{b}=\dfrac{C}{c}=\dfrac{D}{d}\)(a,b,c,d,A,B,C,D>0) thì\(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)