Cho a=\(\sqrt[3]{3+\sqrt{17}}\)+\(\sqrt[3]{3-\sqrt{17}}\). F(n)=(x³+6x-5)³. Tính F(a)
\(y=f\left(x\right)=\left(x^3+6x-5\right)^{2015}\)
Tính f(a) với \(a=\sqrt[3]{3+\sqrt{17}}\sqrt[3]{3-\sqrt{17}}\)
Cho hàm số f ( x ) = ( x3 + 6x - 5 )2018 . Tính f ( a ) vói \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\) .
cho hàm số f(x)=(x3+6x-5)2015
tính f(a) với \(a=\sqrt[3]{3-\sqrt{17}}\)\(+\sqrt[3]{3+\sqrt{17}}\)
Cho hàm số y=f(x)=(x3+6x-5)2020
Tính f(a) khi \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
\(a^3=6+3a\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\)
\(\Rightarrow a^3=6-6a\)
\(\Rightarrow a^3+6a-5=1\)
\(\Rightarrow f\left(a\right)=1^{2020}=1\)
cho f(x) = (x3 + 6x -7)2010 . tính f(a) với \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
Cho hàm số \(f\left(x\right)=\left(x^3+6x-5\right)^{2017}\). Tính f(a) với \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
\(a^3=3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{3^2-17}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)
\(a^3=6-3.2a\)
\(f\left(a\right)=\left(a^3+6x-5\right)^{2017}=\left(a^3+6-6a+6a-5\right)^{2017}=1^{2017}=1\)
Bài 1: Cho hàm số: f(x) = ( x3 + 6x -5)2016
Tính f(a) voi a = \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
Đề có thể bị sai nhé bạn căn 14 hay căn 17 vậy ??
Ta có a3 = 6 + 3\(\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\) a = 6 - 6a
Từ đó f(a) = (6 - 6a + 6a - 5)2016 = 1
Cho \(a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[3]{38-17\sqrt{5}}\) và đa thức \(f\left(x\right)=\left(x^3+3x+1940\right)^{2016}\). Tính f (a)
\(a^3=38+17\sqrt{5}+38-17\sqrt{5}+3\cdot a\cdot\sqrt[3]{\left(38\right)^2-\left(17\sqrt{5}\right)^2}\)
=>a^3=76-3a
=>a^3+3a-76=0
=>a=4
f(x)=(4^3+3*4+1940)^2016=2016^2016
cho hàm số y=f\(_{\left(x\right)}\)=\(\left(x^3+6x-5\right)^{2015}\). tính f\(_{\left(a\right)}\) với a=\(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
\(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\Rightarrow a^3=3+\sqrt{17}+3-\sqrt{17}+3\sqrt{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\\ =6+3a.\sqrt[3]{9-17}\\ =6-6a\\ \Rightarrow f\left(a\right)=\left(a^3+6a-5\right)^{2015}=\left(6-6a+6a-5\right)^{2015}=1\)