\(a^3=3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{3^2-17}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)
\(a^3=6-3.2a\)
\(f\left(a\right)=\left(a^3+6x-5\right)^{2017}=\left(a^3+6-6a+6a-5\right)^{2017}=1^{2017}=1\)
\(a^3=3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{3^2-17}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)
\(a^3=6-3.2a\)
\(f\left(a\right)=\left(a^3+6x-5\right)^{2017}=\left(a^3+6-6a+6a-5\right)^{2017}=1^{2017}=1\)
Bài 1:
Cho a \(=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1\)
a) C/m: \(a^4-14a^2+9=0\)
b) Giả sử \(f\left(x\right)=x^5+2x^4-14x^3-28x^2+9x+19\)
Tính f(a).
Bài 2: Cho \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử \(f\left(x\right)=3x^6+4x^5-7x^4+6x^3+6x^2+6x-53\sqrt{2}\)
tính f(a)
Cho hàm số y=f(x)=(x3+6x-5)2020
Tính f(a) khi \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
Cho \(f\left(x\right)=\dfrac{x+\sqrt{5}}{\sqrt{x}+\sqrt{x+\sqrt{5}}}+\dfrac{x-\sqrt{5}}{\sqrt{x}-\sqrt{x-\sqrt{5}}}\). Tính f(3)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
Cho f(xo) = (3x3 + 8x2 +2)2019 và \(x_o=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
So sánh f(xo) và 32020
Tính giá trị của biểu thức: \(B=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)+20\sqrt{2}-2332017\) , biết: \(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}},y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Cho \(f\left(x\right)=\dfrac{1+\sqrt{1+x}}{x+1}+\dfrac{1+\sqrt{1-x}}{x-1}\) và \(a=\dfrac{\sqrt{3}}{2}\). Tính f(a)
Cho f(x) = (x4+\(\sqrt{2}\)x-7)2019 . Tính f(a) khi a=\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\).
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2009\)
trong đó: \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)