Cho \(f\left(x\right)=\dfrac{1+\sqrt{1+x}}{x+1}+\dfrac{1+\sqrt{1-x}}{x-1}\)và \(a=\dfrac{\sqrt{3}}{2}\). Hãy tính giá trị của f(a)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Rút gọn: \(F=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2x-1}\)
Rút gọn các biểu thức sau:
a) R = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)
b) C = \(\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
c) M = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}\)
1. A = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
a) rút gọn
b) tìm x để A <-1
2. Cho A = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x-2\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+3}{x-1}-\dfrac{2}{\sqrt{x}+1}\right)\)
a) Rút gọn
b) tìm x \(\in\) Z để A \(\in\) Z
Bài 1: A= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) RÚt gọn A
b) tính A khi \(a^2\) -3 =0
Bài 2:B= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Rút gọn B
b) C/m rằng: B>0 với mọi x>0 , x khác 1
Bài 3:C = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{2}{a-1}\right)\)
Rút gọn C
1. Cho biểu thức: A=\(\left(\dfrac{\sqrt{x}}{x-\sqrt{x}}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)
Rút gọn biểu thức trên
A=\(\left(\dfrac{x+2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}\right):\left(\dfrac{x}{\sqrt{x}-1}-\sqrt{x}\right)\)
Rút gọn biểu thức trên
Rút gọn :
B=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1