Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
\(\left(\dfrac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\dfrac{x+2\sqrt{x}+1}{x-1}\right)\): \(\left(\dfrac{3\sqrt{x}-5}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+10}{x+6\sqrt{x}+5}\right)\)
Cho \(f\left(x\right)=\dfrac{1+\sqrt{1+x}}{x+1}+\dfrac{1+\sqrt{1-x}}{x-1}\) và \(a=\dfrac{\sqrt{3}}{2}\). Tính f(a)
cho \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
1, rút gọn P
2, tìm x để \(P\ge0\)
tính P khi \(x=-\sqrt{3-2\sqrt{2}}+\dfrac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}\)
\(Q=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}-5}-1\right)\)
Tìm giá trị bé nhất của Q
\(A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a)rút gọn b)tìm x để A<0
rút gọn:
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(B=\dfrac{2x}{x+3\sqrt{x}+2}+\dfrac{5\sqrt{x}+1}{x+4\sqrt{x}-3}+\dfrac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{4}{\sqrt{11}-3}-\dfrac{5}{4+\sqrt{11}}\)
b) \(\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\) với x>0;x\(\ne\)4
Đưa một thừa số vào trong dấu căn: \(x\sqrt{\dfrac{2}{x}}\left(x>0\right)\); \(x\sqrt{\dfrac{2}{5}}\); \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\); \(x\sqrt{\dfrac{7}{x^2}}\)