Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phong Dương
Xem chi tiết
Thần Thánh
Xem chi tiết
Kim thanh hằng
Xem chi tiết
meme
21 tháng 8 2023 lúc 16:25

a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.

Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 22:54

a: ΔABC cân tại A có AM là đường trung tuyến

nên AM vuông góc BC

b: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

c: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD và AB=CD

=>CD=CA

=>ΔCAD cân tại C

Song Minguk
Xem chi tiết
katherina
27 tháng 1 2017 lúc 8:20

A B C M D K

từ M vẽ MK// BD ( K thuộc AC )

Tam giác BDC có : M là trung điểm BC; MK//BD

Suy ra : K là trung điểm CD

Do đó: MK là đường trung bình của tam giác BDC.

--> MK = BD/2 = 2AM/2 = AM

---> tam giác AMK cân tại M --> góc MAK = góc MKA

Ta có : góc MAK + góc C = 90 độ

hay góc MKA + góc C = 90 độ

==> góc MKA = 90 độ - góc C (1)

Lại có : góc MKA = góc KMC + góc C = góc DBC + góc C = góc B/2 + góc C = góc C/2 + góc C = 3/2. góc C (2)

Từ (1) (2) ==> 90 độ - góc C = 3/2. góc C

==> 5/2. góc C = 90 độ

==> góc C = 36 độ

==> góc B = 36 độ

==> góc A= 180-36.2=108 độ

Nguyển Công Trí Kiên
Xem chi tiết
Bùi Võ Ý Thy
Xem chi tiết
nguyen thi thu hoai
Xem chi tiết
Nguyễn Anh Vũ
Xem chi tiết
nguyễn ngọc huy
18 tháng 4 2018 lúc 18:54

-Lấy G là trung điểm của CD. 
-Ta có: MG là đường trung bình tam giác BDC nên MG=1/2. BD.
-Mà AM=1/2.BD nên MG=AM=> góc MGA=góc MAG=3/2. góc ACB.
-Lại có góc BAC=2.góc MAG=> góc BAC=3.góc ACB và có góc ABC=góc ACB.
=> góc BAC+góc ABC+góc ACB=5.góc ACB=180 độ.
=> góc ABC=góc ACB= 36 độ và góc BAC= 108 độ. 

Tuyết Như Bùi Thân
Xem chi tiết
Nam Nguyen (KQE)
1 tháng 5 2023 lúc 10:04

`@` `\text {dnv}`

`a,`

Xét `\Delta AMB` và `\Delta AMC`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\hat {B} = \hat {C} (\Delta ABC \text {cân tại A})`

`\text {MB = MC (vì AM là đường trung tuyến)`

`=> \Delta AMB = \Delta AMC (c-g-c)`

`b,`

\(\text{Vì AM}\text{ }\cap\text{BN tại G}\)

\(\text{AM, BN đều là đường trung tuyến}\)

`->`\(\text{G là trọng tâm của }\Delta\text{ABC}\)

`@` Theo tính chất của trọng tâm trong tam giác

`->`\(\text{BG = }\dfrac{2}{3}\text{BN}\)

Mà `\text {BN = 15 cm}`

`->`\(\text{BG = }\dfrac{2}{3}\cdot15=\dfrac{15}{3}=5\text{ }\left(\text{cm}\right)\)

Vậy, độ dài của \(\text{BG là 5 cm}\).

`c,` Bạn xem lại đề!

loading...