Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Trần Việt Hà
6 tháng 7 2016 lúc 19:38

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Trần Quỳnh Mai
6 tháng 7 2016 lúc 19:39

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{1}{19800}\)

Trần Quỳnh Mai
6 tháng 7 2016 lúc 19:40

Nhầm , kết quả bằng :

\(=\frac{4949}{19800}\)

Vân Anh
Xem chi tiết
Vương Hải Nam
11 tháng 4 2019 lúc 20:59

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Phạm Thu Huyền
Xem chi tiết
IQ 200000000000000000000...
14 tháng 4 2019 lúc 21:00

A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)

=1/2*(1/2-1/99*100)

=1/2*(4950-1/9900)

=4950/19800

Huỳnh Quang Sang
14 tháng 4 2019 lúc 21:01

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

hồng miêu
14 tháng 4 2019 lúc 21:05

A=1/2.(2/1.2.3+2/2.3.4+...+2/98.99.100

=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100

Nguyễn Văn Cường
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 10 2016 lúc 7:42

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{99.100}=\frac{49}{99.100}\Rightarrow A=\frac{49}{2.99.100}\)

༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Trà My
26 tháng 3 2017 lúc 21:37

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(A=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

chỗ nãy rồi bạn tự tính tiếp

༄NguyễnTrungNghĩa༄༂
26 tháng 3 2017 lúc 20:53

KQ la \(\frac{4949}{19800}\)ak cac ban

Nguyen Thuy Tien
Xem chi tiết
Mọt sách
23 tháng 4 2018 lúc 21:42

\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)

Hồ Trúc
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 22:12

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2S=\frac{1}{2}-\frac{1}{9900}\)

\(2S=\frac{4949}{9900}\)

\(S=\frac{4949}{19800}\)

Vương Hàn
11 tháng 8 2016 lúc 8:55

Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)

...

\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> 2S = \(\frac{4949}{9900}\)

=> S = \(\frac{4949}{19800}\)

Nguyễn Kim Thành
10 tháng 3 2017 lúc 14:15

2S=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\)

2S= \(1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)2S= 1- \(\dfrac{1}{100}\)

2S= \(\dfrac{99}{100}\)

S= \(\dfrac{99}{100}.\dfrac{1}{2}\)

S=\(\dfrac{198}{100}\)

titanic
Xem chi tiết
alibaba nguyễn
16 tháng 1 2017 lúc 13:13

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(\Leftrightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)

\(\Leftrightarrow x\approx0,0648\)

Thắc mắc tuổi dậy th...
Xem chi tiết
ncjocsnoev
6 tháng 7 2016 lúc 19:45

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Cao Hoàng Minh Nguyệt
6 tháng 7 2016 lúc 19:47

=24497550

Nguyễn Minh Thảo
9 tháng 4 2019 lúc 21:05

2A=\(\frac{2}{1.2.3}\)+\(\frac{2}{2.3.4}\)+\(\frac{2}{4.5.6}\)+...+\(\frac{2}{98.99.100}\)

2A=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\)+..+\(\frac{1}{98.99}\)-\(\frac{1}{99.100}\)

2A=\(\frac{1}{1.2}\)-\(\frac{1}{99.100}\)=\(\frac{1}{2}\)-\(\frac{1}{9900}\)=\(\frac{4949}{9900}\)

A=\(\frac{4949}{9900}\):2

A=\(\frac{4949}{19800}\)