Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Cường
Xem chi tiết
Trần Hương Lan
Xem chi tiết
Chim Hoạ Mi
19 tháng 2 2019 lúc 20:44

Vì n và n+1 là 2 số liên tiếp 

=>n và n+1 là 2 số nguyên tố cùng nhau

=>ƯCLN(n,n+1)=1

=>n/n+1 là phân số tối giản

Phạm Hồ Thanh Quang
19 tháng 2 2019 lúc 20:46

Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)

Lê Tài Bảo Châu
19 tháng 2 2019 lúc 20:47

Đặt (n;n+1)=d ( d \(\in\)N*)

\(\Leftrightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Leftrightarrow\left(n+1\right)}-n⋮d\)

\(\Leftrightarrow\)1\(⋮d\)

\(\Leftrightarrow\)\(d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\)phân số \(\frac{n}{n+1}\)là phân số tối giản

Vậy \(\frac{n}{n+1}\)l là phân số tối giản với mọi n thuộc N.

          Học tốt 

nguyễn thọ dũng
Xem chi tiết
loveny2209
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 3 2022 lúc 21:44

\(n=1\) không thỏa mãn.

loveny2209
17 tháng 3 2022 lúc 21:46

ab

 

hoàng minh quân
Xem chi tiết
Yeutoanhoc
26 tháng 2 2021 lúc 16:02

Đề thiếu rồi phải là $30n+2$

Gọi $ƯCLN(12n+1,30n+2)=d(d>0)(d \in N)$

$\to \begin{cases}12n+1 \vdots d\\30n+2 \vdots d\\\end{cases}$

$\to \begin{cases}60n+5 \vdots d\\60n+4 \vdots d\\\end{cases}$

$\to 60n+5-60n-4 \vdots d$

$\to 1 \vdots d$

$\to d=1$

Vậy ƯCLN(12n+1,30n+2)

Đoàn Nguyễn Bảo Ngọc
Xem chi tiết
Lê Khánh Huyền
Xem chi tiết
Akai Haruma
11 tháng 11 2023 lúc 17:06

Lời giải:
Gọi $d=(3n+3, 4n+9)$

$\Rightarrow 3n+3\vdots d; 4n+9\vdots d$
$\Rightarrow 3(4n+9)-4(3n+3)\vdots d$

$\Rightarrow 15\vdots d\Rightarrow d=1,3,5,15$

Vậy đề sai.

Hà Văn Hoàng Anh
Xem chi tiết
Dương Minh Anh
7 tháng 4 2017 lúc 21:13

Giả sử \(ƯCLN\left(n,2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow2n+1-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,n\right)=1\)

Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)

Vũ Hải Anh
Xem chi tiết
Văn Tùng Trương (Mr Flas...
5 tháng 4 2024 lúc 20:03

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)