Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Huỳnh Minh Ánh
Xem chi tiết
Lê Huỳnh Minh Ánh
Xem chi tiết
Tô Mì
Xem chi tiết
Pham Van Hung
Xem chi tiết
Âu Dương Thiên Vy
Xem chi tiết
Phạm Quang Huy
Xem chi tiết
Đinh Thùy Linh
14 tháng 7 2016 lúc 23:55

\(9x^2+5\)không chia hết cho 3

\(\Rightarrow y\left(y+1\right)\)không chia hết cho 3 \(\Rightarrow\)y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2

Phương trình trở thành:

\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k\)(2)

Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.

Hay PT đã cho không có nghiệm x;y nguyên

Sarah
15 tháng 7 2016 lúc 7:34

không chia hết cho 3

$\Rightarrow y\left(y+1\right)$⇒y(y+1)không chia hết cho 3 $\Rightarrow$⇒y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2

Phương trình trở thành:

$9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k$9x2+5=(3k+1)(3k+2)⇔9x2+5=9k2+9k+2⇔3x2+1=3k2+3k‍(2)

Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.

Hay PT đã cho không có nghiệm x;y nguyên

Nguyễn Bùi Đại Hiệp
Xem chi tiết
Trần Thùy Linh
1 tháng 4 2020 lúc 16:17
https://i.imgur.com/dFQIVQ9.jpg
Khách vãng lai đã xóa
Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)

Nguyễn Quỳnh Trang
Xem chi tiết
ngonhuminh
14 tháng 4 2018 lúc 20:14

a)

\(\left\{{}\begin{matrix}\left|x+5\right|\le4\\x\in Z\end{matrix}\right.\) \(\Leftrightarrow-4\le x+5\le4\Rightarrow-9\le x\le-1\)

\(-4+\left|x+5\right|\le y-2\le4-\left|x+5\right|\)

\(-2+\left|x+5\right|\le y\le6-\left|x+5\right|\)

x={-1;-9}=> \(2\le y\le6-4\Rightarrow y=2\)

x={-2;-8}=> \(1\le y\le3\Rightarrow y=1;2;3\)

x={-3;-7} => \(0\le y\le4\Rightarrow y=0;1;2;3;4\)

x={-4;-6}=>\(-1\le y\le5\Rightarrow y=\left\{-1;0;1;2;3;4;5\right\}\)

x={-5}=> \(-2\le y\le6\Rightarrow y=\left\{-2;-1;0;1;2;3;4;5;6\right\}\)

(x;y)=(-1;2); (-2;y={1;2;3}) ....

b) tương tự