Chứng tỏ rằng: abcdeg chia hết cho 7 khi và chỉ khi abc - deg chia hết cho 7
chứng minh rằng abcdeg chia hết cho 7 khi (abc - deg ) chia hết cho 7
Ta có: \(abcdeg=1000\cdot abc+deg\)
\(=1001abc-\left(abc-deg\right)\)
\(=7\cdot143\cdot abc-\left(abc-deg\right)\)
Vì \(7\cdot143\cdot abc⋮7\) và \(abc-deg⋮7\)
nên \(7\cdot143\cdot abc-\left(abc-deg\right)⋮7\)
hay \(abcdeg⋮7\)(đpcm)
cho abc - deg chia hết cho 7. chứng tỏ rằng abcdeg chia hết cho 7
ta có
abcdeg = 1000.abc+deg
= (1001-1) . abc+deg
= 10001.abc - (abc - deg)
do 1001 chia hết cho 7
và abc - deg chia hết cho 7
=> abcdeg chia hết cho 7
cho ABC - DEG Chia hết cho 7 chứng tỏ rằng ABCDEG chia hết cho 7
Cho abc trừ deg chia hết cho 7 . Chứng tỏ rằng abcdeg chia hết cho 7
Ta có abcdeg=1000.abc+deg
=( 1001-1).abc+deg
=1001.abc-abc+deg
=1001.abc+( abc-deg)
Do 1001.abc chia hết cho 7
Mà abc-deg chia hết cho 7
=>abcdeg chia hết cho 7
1/ Chứng minh rằng nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
2/ Cho abc + deg chia hết cho 37. Chứng minh rằng abcdeg chia hết cho 37
3/ Cho abc - deg chia hết cho 7. Chứng minh rằng abcdeg chia hết cho 7
4/ Cho tám số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành một số có 6 chữ số chia hết cho 7
5/ Tìm chữ số a biết rằng 20a20a20a chia hết cho 7
BIẾT ĐƯỢC BÀI NÀO THÌ GIÚP MINK GIẢI BÀI ĐÓ NHÉ!!!!!!!!!!!!!!!!! THANK YOU!!!!!!!!!!!!!!!!!!
1 . a) Cho abc + deg + chia hết cho 37 . Chứng minh rằng abcdeg chia hết cho 37 .
b) Cho abc - deg chia hết cho 7 . Chứng minh rằng abcdeg chia hết cho 7 .
c) Cho 8 số tự nhiên có 3 chữ số . Chứng minh rằng trong 8 số đó , tồn tại hai số mà khi viết liên tiếp nhau thì tạo thanh một số có sáu chữ số chia hết cho 7
a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
cho abc - deg chia hết cho 7 chứng tỏ rằng abcdeg chia hết cho 7
abcdeg = abc x 1000 + deg = abc x 1001 + deg - abc
Vì 1001 chia hết cho 7 ;
abc - deg chia hết cho 7 nên deg - abc chia hết cho 7
Nên abc x 1001 + deg - abc chia hết cho 7
=> abcdeg chia hết cho 7
http://olm.vn/hoi-dap/question/134466.html
vào đây nhé !
Ta có: abc-deg chia hết cho 7
=>abc-deg+abc.587.7+deg.7 chia hết cho 7
=>(abc+abc.5999)+(deg.7-deg) chia hết cho 7
=>abc.6000+deg.6 chia hết cho 7
=>6.(abc.1000+deg) chia hết cho 7
=>6.abcdeg chia hết cho 7
mà (6,7)=1
=>abcdeg chia hết cho 7
=>ĐPCM
chứng minh rằng (abc + deg) chia hết cho 7 thì abcdeg chia hết cho 7
Ta có :
abcdeg = 1000abc + deg = 1001abc - abc + deg = 7.143abc - abc + deg
Vì 7.143abc chia hết cho 7 và abc + deg chia hết cho 7 nên abcdeg chia hết cho 7