Phân tích đa thức x^3-x^2+8x+12 thành nhân tử
phân tích đa thức thành nhân tử
x^3-x^2-8x+12
\(\Leftrightarrow x^3-2x^2+x^2-2x-6x+12\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-2x-6\right)\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)\)
T I C K ủng hộ nha
_________________CHÚC BẠN HỌC TỐT ___________________
Tùng làm đúng nhưng bài này cỉ một vế nên sử dụng dấu bằng nếu thi chuyển cấp, mà bài 1 vế sử dụng dấu tương đương sẽ mất điểm cà bài. còn nếu 1 dấu thì 0,25 đấy nên sừ dụng dấu bằng nha
Phân tích đa thức thành nhân tử
\(x^2-8x+12\)
\(x^2-8x+12=\left(x^2-6x\right)-\left(2x-12\right)=x\left(x-6\right)-2\left(x-6\right)=\left(x-2\right)\left(x-6\right)\)
Phân tích đa thức thành nhân tử:
x3-x2-8x+12
x3-x2-8x+12
=x3-2x2+x2-2x-6x+12
=(x3-2x2)+(x2-2x)-(6x-12)
=x2(x-2)+x(x-2)-6(x-2)
=(x-2)(x2+x-6)
chúc bạn học tốt
Phân tích đa thức sau thành nhân tử
x^4-8x^3+11x^2+8x-12
= \(x^4-2x^3-6x^3+12x^2-x^2+2x+6x-12\)
= \(x^3\left(x-2\right)-6x^2\left(x-2\right)-x\left(x-2\right)+6\left(x-2\right)\)
= \(\left(x-2\right)\left(x^3-6x^2-x+6\right)\)
= \(\left(x-2\right)\left(x^2\left(x-6\right)-\left(x-6\right)\right)\)
= \(\left(x-2\right)\left(x-6\right)\left(x-1\right)\left(x+1\right)\)
x4 - 8x3 + 11x2 + 8x - 12
= (x3 - 7x2 + 4x + 12)(x - 1)
= (x3 - 8x + 12)(x + 1)(x - 1)
= (x - 6)(x - 2)(x + 1)(x - 1)
Phân tích đa thức thành nhân tử
\(A=x^3-x^2-8x+12\)
\(A=x^3-x^2-8x+12\)
\(=x^3-2x^2+x^2-2x-6x+12\)
hay \(A=x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+6\right)\)
\(=\left(x+2\right)^2\left(x+3\right)\)
\(A=x^3-x^2-8x+12\)
\(=x^3-2x^2+x^2-2x-6x+12\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-6\right)\)
\(=\left(x-2\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(x-2\right)^2\left(x+3\right)\)
Chúc bạn học tốt.
A = x3 - x2 - 8x + 12
Thử với x = 2 ta được :
A = 23 - 22 - 2.8 + 12 = 0
Vậy x = 2 là nghiệm của A . Theo hệ quả của định lí Bézout thì A chia hết cho x - 2
Thực hiện phép chia A cho x - 2 ta được x2 + x - 6 (1)
=> A = ( x - 2 )( x2 + x - 6 )
= ( x - 2 )( x2 - 2x + 3x - 6 )
= ( x - 2 )[ x( x - 2 ) + 3( x - 2 ) ]
= ( x - 2 )( x - 2 )( x + 3 )
= ( x - 2 )2( x + 3 )
Vậy A = ( x - 2 )2( x + 3 )
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
Phân tích đa thức thành nhân tử: 8x^3(x-3)+16x^2(3-x)
\(=\left(x-3\right)\left(8x^3-16x^2\right)=8x^2\left(x-2\right)\left(x-3\right)\)
\(8x^3\left(x-3\right)+16x^2\left(3-x\right)\)
\(=8x^3\left(x-3\right)-16x^2\left(x-3\right)\)
\(=8x^2\left(x-3\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử
\(x^3-x^2-4x^2+8x-4\)
\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
\(x^3-x^2-4x^2+8x-4\)
\(=x^3-4x^2-4x-x^2+4x-4\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)