1 Phân tích
A\(=4x^2-4x+1\)
B = \(0,64^2-y^2\)
C= \(25x^2+36y^2+60xy\)
D = \(9y^2-30xy+25y^2\)
Phân tích đa thức thành nhân tử
x^2-2xy+y^2-2x+2y
x^2-4x+4-x^2y+2xy
ax^2-3axy-x^2+6xy-9y^2
2a^2x-5a^2y-4x^2+30xy-25y^2
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
c) Ta có: \(ax^2-3axy-x^2+6xy-9y^2\)
\(=ax\left(x-3y\right)-\left(x^2-6xy+9y^2\right)\)
\(=ax\left(x-3y\right)-\left(x-3y\right)^2\)
\(=\left(x-3y\right)\left(ax-x+3y\right)\)
d) Ta có: \(2a^2x-5a^2y-4x^2+30xy-25y^2\)
\(=a^2\left(2x-5y\right)-\left(4x^2-30xy+25y^2\right)\)
\(=a^2\left(2x-5y\right)-\left(2x-5y\right)^2\)
\(=\left(2x-5y\right)\left(a^2-2x+5y\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 4x2y2-12xy+9y2
b) 25x2-36y2
a) \(4x^2y^2-12xy+9y^2\)
\(=y\left(4x^2y-12x+9y\right)\)
b) \(25x^2-36y^2\)
\(=\left(5x\right)^2-\left(6y\right)^2\)
\(=\left(5x+6y\right)\left(5x-6y\right)\)
Viết theo mẫu : A^2+2ab +B=(A+B)^2
a) x^2 + 2x +1
b)x^2 + 8x+16
c) x^2 +6x +9
d)4x^2+4x+1
e) 36+ x^2 - 12x
f) 4x^2 + 12x +9
g) x^4 +81 +18x^2
h) 9x^2 + 30xy + 25y^2
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
phân tích các đa thức sau thành nhân tử:
a)39x-39y
b)3x^2.(x-3y)-5y.(3y-x)
c)16x^2+24xy+9y^2
d)25x^2-1/25y^2
e)7x^2-7xy+5x-5y
f)5x^2-45y^2-30y-5
g)x^2+2x+1-y^2+4y-1
h)4x^2+8x-5
a) \(39x-39y=39\left(x-y\right)\)
b) \(3x^2\left(x-3y\right)-5y\left(3y-x\right)=3x^2\left(x-3y\right)+5y\left(x-3y\right)\)
\(=\left(3x^2+5x\right)\left(x-3y\right)=x\left(3x+5\right)\left(x-3y\right)\)
c) \(16x^2+24xy+9y^2=\left(4x\right)^2+4x.3y.2+\left(3y\right)^2=\left(4x+3y\right)^2\)
d) \(25x^2-\frac{1}{25y^2}=\left(5x\right)^2-\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)\left(5x+\frac{1}{5y}\right)\)
e) \(7x^2-7xy+5x-5y=7x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(7x+5\right)\)
f) \(5x^2-45y^2-30y-5=5\left(x^2-9y^2-6y-1\right)=5\left[x^2-\left(9y^2+6y+1\right)\right]\)
\(=5\left[x^2-\left(3y+1\right)^2\right]=5\left(x-3y-1\right)\left(x+3y+1\right)\)
g) \(x^2+2x+1-y^2-4y-1=\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\) ( Chắc đề vậy :v )
\(=\left(x+1\right)^2-\left(y+1\right)^2=\left(x+1-y-1\right)\left(x+1+y+1\right)=\left(x-y\right)\left(x+y+2\right)\)
h) \(4x^2+8x-5=4x^2-2x+10x-5=2x\left(2x-1\right)+5\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x+5\right)\)
bài 1 : viets các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1hiệu
a) 4x2-12xy+9y2
b) 25x2-20xy+4y2
c) 9x2+y2-6xy
d) x2+6xy+9y2
e) x2-10xy+25y2
g) (3x+2y)+2*(3x+2y)+1
Bài 1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu
a) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)
c) \(9x^2+y^2-6xy=\left(3x\right)^2-2.3xy+y^2=\left(3x-y\right)^2\)
d) \(x^2+6xy+9y^2=x^2+2x.3y+\left(3y\right)^2=\left(x+3y\right)^2\)
e) \(x^2-10xy+25y^2=x^2-2x.5y+\left(5y\right)^2=\left(x-5y\right)^2\)
g) \(\left(3x+2y\right)^2+2\left(3x+2y\right)+1=\left(3x+2y+1\right)^2\)
Câu cuối mình sửa lại đề nhé bạn! Nếu để như trên đề thì không thể viết đáp án dưới dạng bình phương của 1 tổng hoặc 1 hiệu được.
\(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
\(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
\(9x^2+y^2-6xy=\left(3x-y\right)\)
\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(x^2-10xy+25y^2=\left(x-5y\right)^2\)
\(\left(3x+2y\right)+2\left(3x+2y\right)+1=3\left(3x+2y\right)+1=9x+6y+1\)
Viết các biểu thức sau về dạng tích:
a. \(x^2-9\)
b. \(4x^2-1\)
c. \(9x^2-y^2\)
d. \(25x^2-9y^2\)
e. \(36x^2-25y^2\)
a) \(x^2-9\)
= \(x^2-3^2\)
\(=\left(x-3\right)\left(x+3\right)\)
b) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
c) \(9x^2-y^2\)
\(=\left(3x\right)^2-y^2\)
\(=\left(3x-y\right)\left(3x+y\right)\)
d) \(25x^2-9y^2\)
\(=\left(5x\right)^2-\left(3y\right)^2\)
\(=\left(5x-3y\right)\left(5x+3y\right)\)
e) \(36x^2-25y^2\)
\(=\left(6x\right)^2-\left(5y\right)^2\)
\(=\left(6x-5y\right)\left(6x+5y\right)\)
a) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
b) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x-1\right)\left(2x+1\right)\)
tương tự
viết dưới dạng tichj theo hàng đẳng thưc
a ,8x^3 - 64y^3
9x^2-30xy+25y^2
4x^2+16x+7
-5+18y-9y^2
\(8x^3-64y^3=\left(2x\right)^3-\left(4y\right)^3=\left(2x-4y\right)\left(4x^2+8xy+16y^2\right)\)
\(9x^2-30xy+25y^2=\left(3x\right)^2-2\cdot3x\cdot5y+\left(5y\right)^2=\left(3x-5y\right)^2\)
\(4x^2+16x+7=\left(2x^2\right)+2\cdot2x\cdot4+4^2-9=\left(2x+4\right)^2-3^2=\left(2x+1\right)\left(2x+7\right)\)
\(-5+18y-9y^2=-\left[\left(3y\right)^2-2\cdot3y\cdot3+3^2-4\right]=-\left[\left(3y-3\right)^2-2^2\right]=-\left(3y-5\right)\left(3y-1\right)\)
Tìm GTNN của các câu sau đây:
a) A=4x^2+y^2-12x+3y+5
b) B=x^2+9y^2+4x-6y-1
c) C= 25x^2+4y^2-10x-6y+3
d) D=x^2+y^2+z^2-x+2y+3z-1
b: Ta có: \(B=x^2+4x+9y^2-6y-1\)
\(=x^2+4x+4+9y^2-6y+1-6\)
\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)
Phân tích thành nhân tử a)196-a^2+2ab-b^2 b)a^2+6a-4b^2+9 c)4x-4+9y^2-x^2 d)5x^2-10x+5-45t^2 e)x^2-36y^2t^2-10x+25
`#040911`
`a)`
`196 - a^2 + 2ab - b^2`
`= 196 - (a^2 - 2ab + b^2)`
`= 196 - (a - b)^2`
`= 14^2 - (a - b)^2`
`= (14 - a + b)(14 + a - b)`
`b)`
`a^2 + 6a - 4b^2 + 9`
`= (a^2 + 6a + 9) - 4b^2`
`= [ (a)^2 + 2*a*3 + 3^2] - (2b)^2`
`= (a + 3)^2 - (2b)^2`
`= (a + 3 - 2b)(a + 3 + 2b)`
`c)`
`4x - 4 + 9y^2 - x^2`
`= 9y^2 - (x^2 - 4x + 4)`
`= (3y)^2 - [ (x)^2 - 2*x*2 + 2^2]`
`= (3y)^2 - (x - 2)^2`
`= (3y - x + 2)(3y + x - 2)`
`d)`
`5x^2 - 10x + 5 - 45t^2`
`= 5*(x^2 - 2x + 1 - 9t^2)`
`= 5*[ (x^2 - 2x + 1) - 9t^2]`
`= 5*{ [(x)^2 - 2*x*1 + 1^2] - (3t)^2}`
`= 5*[ (x - 1)^2 - (3t)^2]`
`= 5*(x - 1 - 3t)(x - 1 + 3t)`
`e)`
`x^2 - 36y^2t^2 - 10x +25`
`= (x^2 - 10x + 25) - 36y^2t^2`
`= [ (x)^2 - 2*x*5 + 5^2] - (6yt)^2`
`= (x - 5)^2 - (6yt)^2`
`= (x - 5 - 6yt)(x - 5 + 6yt)`
a: =196-(a^2-2ab+b^2)
=196-(a-b)^2
=(14-a+b)(14+a-b)
b: \(=\left(a^2+6a+9\right)-4b^2\)
\(=\left(a+3\right)^2-4b^2\)
\(=\left(a+3-2b\right)\left(a+3+2b\right)\)
c: \(=9y^2-\left(x^2-4x+4\right)\)
\(=\left(3y\right)^2-\left(x-2\right)^2\)
\(=\left(3y-x+2\right)\left(3y+x-2\right)\)
d: \(=5\left(x^2-2x+1-9t^2\right)\)
\(=5\left[\left(x-1\right)^2-\left(3t\right)^2\right]\)
\(=5\left(x-1-3t\right)\cdot\left(x-1+3t\right)\)
e: \(=x^2-10x+25-36y^2t^2\)
\(=\left(x-5\right)^2-\left(6yt\right)^2\)
\(=\left(x-5-6yt\right)\left(x-5+6yt\right)\)