Câu 4 (3,5 điểm) Cho tam giác ABC vuông ở A, AB = 9cm, AC = 12cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a. Tính BC , AD
b. Tính diện tích tam giác ABC
c. Chứng minh
d. Chứng minh
cho tam giác vuông ABC ( vuông ở A ) . Biết AB = 9cm ; AC = 12cm ; BC = 15cm . AH vuông góc với BC . Tính độ dài AH
\(AH=\dfrac{9\times12}{15}=7,2\left(cm\right)\)
cho tam giác ABC vuông tại A,AB=9cm,AC=12cm. trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE (a) so sánh B,C? (b) vì sao tam giác ABC=tam giác AEC?
a: AB<AC
=>góc C<góc B
b: Xét ΔCAB vuông tại A và ΔCAE vuông tại A có
CA chung
AB=AE
=>ΔCAB=ΔCAE
Cho tam giác ABC có AB=9cm , AC = 12cm , BC = 15 cm ; Chứng minh Tam giác ABC vuông tại A - Trên tia đối của tia AB , lấy điểm D sao cho AD = 5cm ; tính CD
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: CD=căn AC^2+AD^2=13cm
cho tam giác ABC vuông tại A có AB=9cm AC=12cm M là trung điểm của BC độ dài đoạn BM là
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Vì M là trung điểm BC nên \(BM=\dfrac{1}{2}BC=\dfrac{15}{2}\left(cm\right)\)
Cho Tam Giác ABC có AB=9cm,BC=12cm,AC=15cm
a)Chứng Minh Tam Giác ABC là tam giác vuông
b)Trên Tia AB lấy điểm D sao cho B là trung điểm của AD.Tính độ dài đoạn CD?
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm
a, tính BC
b, trên cạnh AB lấy điểm D khác A và B trên tia đối của tia AC lấy điểm I sao cho AC=AI chứng minh tam giác BDI=tam giác BDI
cho tam giác vuông ABC vuông tại A, AB =9cm, AC=12cm, BC=15cm Tính diện tích tam giác
diện tích hình tam giác là:
9x12:2=54(cm2)
Cho tam giác ABC có AB= 9cm, AC= 12cm, BC= 15cm
a) Chứng minh: Tam giác ABC vuông tại A
b) Gọi D là trung điểm của BC. Vẽ tia Cx vuông góc với AC, tia AD cắt tia Cx tại E. Chứng minh: AB=CE
c) Chứng minh: Tam giác ADC = Tam giác EDB
d) Chứng minh Tam giác ABC= Tam giác CEA
Khỏi giải câu a,b cũng được
Tớ sẽ chứng minh câu a,b. Còn câu c,d thì cậu tự chứng minh được.Không cần GT, KL nhé.
a) Ta có: Theo định lý Pitagore đảo ta có:
\(9^2+12^2=81+144=225=15^2\)
\(\Rightarrow\) Tam giác ABC là tam giác vuông.
b) Ta có:
AB vuông góc với AC ; Cx vuông góc với AC
\(\Rightarrow\) AB song song với Cx
\(\Rightarrow\)ABD = DCE
Xét tam giác ABD và tam giác ECD có:
ABD = ECD ( CMT)
BD = EC ( gt )
ADB = EDC ( 2 góc đối đỉnh )
\(\Rightarrow\) tam giác ABD = tam giác ECD ( g.c.g )
\(\Rightarrow\) AB = EC ( 2 cạnh tương ứng )
cho tam giác ABC vuông tại A , có AB=9cm, BC=15cm, AC =12cm a) so sánh các góc của tam giác ABC b) trên tia đối AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD . Chứng minh tam giác ABC=tam giác ADC từ đó suy ra tam giác BCD cânc) E là trung điểm của cạnh CD, BE cắt AC ở I .chứng minh DI đi qua trung
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C