cho : P(x)+(3x^2-2x)=x^3+3x^2-2x+2020 -tính P(x)
Cho hai đa thức: P(x) = x ^ 3 + 2x ^ 2 - 3x + 2020 Q(x) = 2x ^ 3 - 3x ^ 2 + 4x + 2021 a) Tính P(x) + O(x) b) Tính đa thức K(x) = O(x) - P(x)
a)
P(x) + O(x) = \(\left(x^3+2x^2-3x+2020\right)+\left(2x^3-3x^2+4x+2021\right)\)
P(x) + O(x) = \(3x^3-x^2+x+4041\)
b)
P(x) - O(x) = \(x^3+2x^2-3x+2020-2x^3+3x^2-4x-2021\)
P(x) - O(x) = \(-x^3+5x^2-7x-1\)
Bài 1
a) Thực hiện phép tính: (3x-1)(2x+7)-(12x^3+8x^2-14x) : 2
b) Tính nhanh: B=(63^3-37^3) : 26+63.37
Bài 2: phân tích đa thức thành nhân tử
a) xy^2-25x
b) x(x-y)+2x-2y
c) x^3-3x^2-4x+12
Bài 3:tìm x
a) (x+2)^2+(x-1)^2+(x-3)(x+3)=-8
b) 2021x(x-2020)-x+2020=8
Các bn giúp mk với mk tk cho ai nhanh nhất nè !!!
pls help me mk đang cần vội :(
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
Bài 2:
b: \(=\left(x-y\right)\left(x+2\right)\)
Bài 1: a)Thực hiện phép tính:(3x-1)(2x+7)-(12x³+8x²-14x):2 b) Tính nhanh: B=(63³-37³): 26+63.37 Bài 2:Phân tích đa thức thành nhân tử a) xy²-25x b) x(x-y)+2x-2y c) x³-3x²-4x+12 Bài 3:tìm x a) (x+2)²+(x-1)²+(x-3)(x+3)-3x²=-8 b) 2021x(x-2020)-x+2020=8 GIÚP MK VỚI AI LÀM XONG ĐẦU TIÊN MK TICK CHO !!!
Bài 2:
c: \(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
cho hai đa thức : P(x) = 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x và Q(x) = x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3 . tính P(x) + Q(x) .
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
P(x)+Q(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x + x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
P(x)+Q(x) = (2x4-x4+x4) + (3x3+x3) + (3x2-2x2+3x2-x2) - (4x-6x-5x+3x) +(2-1+2)
P(x)+Q(x) = 4x3+3x2-4x+3
cho hai đa thức
P(x)=2x^4+3x^3+3x^2-x^4-4x+2-2x^2+6x
Q(x)=x^4+3x^2+5x-1-x^2-3x+2+x^3
Tính P(x)+Q(x);P(x)-Q(x) và Q(x)-P(x)
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
x mũ 3 - 3x mux 2 = 0
5x( x - 2020 ) - x + 2020=0
( 3x - 5 ) mũ 2 = ( x + 1 )mũ 2
( x mũ 2 - 2x) mũ 2 - 2 ( x - 1) mũ 2 + 2 = 0
giúp mik vs , men ơi
1) x3 - 3x2 = 0
<=> x2( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
2) 5x( x - 2020 ) - x + 2020 = 0
<=> 5x( x - 2020 ) - ( x - 2020 ) = 0
<=> ( x - 2020 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}\)
3) ( 3x - 5 )2 = ( x + 1 )2
<=> ( 3x - 5 )2 - ( x + 1 )2 = 0
<=> [ ( 3x - 5 ) - ( x + 1 ) ][ ( 3x - 5 ) + ( x + 1 ) ] = 0
<=> ( 3x - 5 - x - 1 )( 3x - 5 + x + 1 ) = 0
<=> ( 2x - 6 )( 4x - 4 ) = 0
<=> \(\orbr{\begin{cases}2x-6=0\\4x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
4) ( x2 - 2x )2 - 2( x - 1 )2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x + 1 ) + 2 = 0
<=> ( x2 - 2x )2 - 2x2 + 4x - 2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x ) = 0
<=> ( x2 - 2x )( x2 - 2x - 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-2x=0\\x^2-2x-2=0\end{cases}}\)
+) x2 - 2x = 0 <=> x( x - 1 ) = 0 <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) x2 - 2x - 2 = 0
<=> x2 - 2x + 1 - 3 = 0
<=> ( x2 - 2x + 1 ) = 3
<=> ( x - 1 )2 = ( ±√3 )2
<=> \(\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)