Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Bảo
Xem chi tiết
Akai Haruma
26 tháng 11 2023 lúc 19:37

Lời giải:

$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$

$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$

Nguyễn Đức Duy
Xem chi tiết
Nguyễn phạm bảo lâm
Xem chi tiết
datcoder
Xem chi tiết
Nguyễn Kim Thành
Xem chi tiết
Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Hoàng Ngọc Diệp Chi
Xem chi tiết
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Pham Van Hung
28 tháng 10 2018 lúc 21:54

\(x+y=1\Rightarrow x=1-y\)        

\(A=x^3+y^3+xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2+y^2\) (vì x + y = 1)

\(=\left(1-y\right)^2+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)

Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)

Nguyễn Hưng Phát
28 tháng 10 2018 lúc 21:55

\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)

Inequalities
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2020 lúc 17:07

Không nhìn thấy bất cứ chữ nào của đề bài cả 

Nguyễn Tiến Đạt
Xem chi tiết
Incursion_03
3 tháng 1 2019 lúc 8:50

Dự đoán điểm rơi \(x=y=\frac{1}{2}\)

Giải

Áp dụng bđt Cô-si ta có: \(1=\left(x+y\right)^2\ge4xy\)

                                 \(\Rightarrow\frac{1}{xy}\ge4\)

Ta có:: \(\left(xy+\frac{1}{xy}\right)^2=\left[\left(xy+\frac{1}{16xy}\right)+\frac{15}{16xy}\right]^2\)

                                    \(\ge\left(2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4\right)^2\)

                                      \(=\left(\frac{1}{2}+\frac{15}{4}\right)^2\)

                                     \(=\frac{289}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy .................