Tìm giá trị nhỏ nhất của:
x3 + y3 +xy biết x+y= 1
cho x+y=1 tìm giá trị nhỏ nhất M=x3+y3+2xy
Lời giải:
$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$
$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
Tìm giá trị nhỏ nhất của:
A= \(\dfrac{x}{y+1}+\dfrac{y}{x+1}+\dfrac{1}{xy+1}\) Biết xy≥1
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Cho x + y = 1 tìm giá trị nhỏ nhất của biểu thức M = x3 + y3
Cho hai số x,y \(\ge\)0 thay đổi và thỏa mãn x+y=2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
P= x(x3 + x2 + x + 1004y) + y(y3 + y2 + y +1004x) + 1
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Cho x,y là số dương thỏa mãn x+y<1. Tìm giá trị nhỏ nhất của biểu thức: A= 1/x3+3xy2 + 1/y3+3x2y
Tìm giá trị nhỏ nhất của biểu thức : A=x^3+y^3+xy biết x,y thỏa mãn: x+y=1
\(x+y=1\Rightarrow x=1-y\)
\(A=x^3+y^3+xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2+y^2\) (vì x + y = 1)
\(=\left(1-y\right)^2+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)
Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)
\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
Cho x,y là các số thực thuộc (0;1) thỏa mãn (x3+y3)(x+y)xy =(1−x)(1−y).Tìm giá trị lớn nhất của biểu thức P=1√1+x2 +1√1+y2 +4xy−x2−y2
Không nhìn thấy bất cứ chữ nào của đề bài cả
Tìm giá trị nhỏ nhất của \(\left(xy+\frac{1}{xy}\right)^2\)biết x+y=1
Dự đoán điểm rơi \(x=y=\frac{1}{2}\)
Giải
Áp dụng bđt Cô-si ta có: \(1=\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge4\)
Ta có:: \(\left(xy+\frac{1}{xy}\right)^2=\left[\left(xy+\frac{1}{16xy}\right)+\frac{15}{16xy}\right]^2\)
\(\ge\left(2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4\right)^2\)
\(=\left(\frac{1}{2}+\frac{15}{4}\right)^2\)
\(=\frac{289}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy .................