Tìm tất cả các cặp số nguyên (x,y) thoả mãn (x-1)2 +5y2 =6
Tìm tất cả các cặp số nguyên x,y thoả mãn: 2x2 + 5y2 - 4(xy+1) = 7
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023
tìm tất cả các cặp số nguyên [x;y] thoả mãn : x\((x+y)^2\)-y+1=0
x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }
cậu ơi có thể giải bài này mà ko dùng denta đc ko ?
Tìm tất cả các cặp số nguyên (x;y) biết x, y thoả mãn |xy|+|x-y|=1. Giải thích?
1.tìm tất cả các cặp số nguyên x,y thỏa mãn (x-1)2+5y2=6
2.một số tự nhiên khi chia cho 11 dư 4,chia cho 13 dư 8.Tìm số dư cho phép chia số đó cho 143
Lâu k làm mấy dạng này nên k chắc :(
1.\(\left(x-1\right)^2+5y^2=6\Leftrightarrow5y^2=6-\left(x-1\right)^2\le6\) \(\Leftrightarrow y^2\le\dfrac{6}{5}\)
Mà y \(\in Z\Rightarrow y\in\left\{0;1\right\}\) .
y = 0 \(\Rightarrow\left(x-1\right)^2=6\Rightarrow L\)
y = 1 \(\Rightarrow\left(x-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy ...
2. Giả sử số cần tìm là a ( a > 0 )
Ta có : a - 4 \(⋮11\) ; a - 8 \(⋮13\)
\(\Rightarrow a-4+22⋮11;a-8+26⋮13\)
\(\Rightarrow a+18⋮143\) \(\Rightarrow a+18-143⋮143\)
\(\Rightarrow a-125⋮143\) \(\Rightarrow a\) chia 143 dư 125
Tìm tất cả các cặp số nguyên dương (x; y) thoả mãn x6 + x3y = y3 + 2y2.
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
a)tìm tất cả các cặp số nguyên (x,y) thỏa mãn (x-1)2+5y2=6
b)một số tự nhiên khi chia cho 11 dư 4,chia co 13 dư 8.Tìm số dư trong phép chia số đó cho 143
a: =>(x-1)^2=1 và 5y^2=5
=>(x-1)^2=1 và y^2=1
=>\(y\in\left\{1;-1\right\};x\in\left\{2;0\right\}\)
b: Gọi số cần tìm là x
x chia 11 dư 4 nên x-4 chia hết cho 11
=>x+18 chia hết cho 11
x chia 13 dư 8
=>x-8 chia hết cho 13
=>x+18 chia hết cho 13
=>x+18 chia hết cho 143
=>x chia 143 dư 18
a)tìm tất cả các cặp số nguyên (x,y) thỏa mãn (x-1)2+5y2=6
b)một số tự nhiên khi chia cho 11 dư 4,chia co 13 dư 8.Tìm số dư trong phép chia số đó cho 143