Bài 5: cho tam giác abc cân tại A(Â<90 độ). vẽ AH vuông góc với Bc tại H
tam giác abc cân tại atam giác abc cân tại a cótam giác abc cân tại atam giác abc cân tại a có â=40tam giác abc cân tại atam giác abc cân tại a có tam giác abc cân tại atam giác abc cân tại a có â=40 khi đó số đo của góc b bằng
a,100 độ b,50 độ c, 70 độtam giác abc cân tại atam giác abc cân tại a cótam giác abc cân tại atam giác abc cân tại a có â=40tam giác abc cân tại atam giác abc cân tại a có tam giác abc cân tại atam giác abc cân tại a có â=40 khi đó số đo của góc b bằng
a,100 độ b,50 độ c, 70 độ d, 40 độ
bài 1: Cho tam giác ABC cân có Â=36 độ. Trung trực AB cắt AC tại D. Chứng minh BD là phân giác tam giác ABC
bài 2: Cho tam giác ABC, Â=90 dộ,AB<AC. Đường trung trực của cạnh AB cắt AC ở M. Biết BM là phân giác góc ABC. Tính góc ACB
bài 3: Cho tam giác ABC cân A. Trung tuyến AM. Gọi I là điểm nằm giữa A và m. Chứng minh rằng tam giác AIB=tam giác AIC; tam giác IBM= tam giác ICM
Bài 2: Cho tam giác ABC cân tại A, Â = 80 độ. Gọi O là một điểm ở trong tam giác sao cho góc OBC = 30độ ; góc OCB = 10độ. Chứng minh rằng ∆ COA cân
Cho tam giác ABC cân tại A, Â
Cho tam giác ABC cân tại A A) Biết  = 80% Tính B , C B) Biết gốc B =65% Tính Â
a: góc B=góc C=(180-80)/2=50 độ
b: góc A=180-2*65=50 độ
Cho tam giác ABC cân tại â CÓ A = 100 độ BC = a AC = b Về phía ngoài tam giác ABC vẽ tam giác ABD cân tại D có ADB = 140 độ Tính chu vi tam giác ADB theo a và b
Trên BC lấy E sao cho BD=BE,nối E với D,E với A
Ta có:\(\widehat{DBE}=\widehat{DBA}+\widehat{ABC}=\frac{180^0-140^0}{2}+\frac{180^0-100^0}{2}=20^0+40^0=60^0\)
Mà tam giác DBE có BD=BE nên tam giác DBE đều
Suy ra BD=DE=BE
Mà BD=AD nên BD=AD=DE=BE suy ra tam giác ADE cân tại D
\(\Rightarrow\widehat{DEA}=\widehat{DAE}=\frac{\left(180^0-\left(140^0-60^0\right)\right)}{2}=50^0\)
\(\Rightarrow\widehat{CEA}=180^0-\widehat{AED}-\widehat{DEB}=180^0-50^0-60^0=70^0\)
\(\Rightarrow\widehat{CAE}=180^0-\widehat{CEA}-\widehat{ACE}=180^0-70^0-40^0=70^0=\widehat{CEA}\)
Suy ra tam giác ACE cân tại C suy ra CA=CE.
Khi đó ta có: \(BC=BE+EC=BD+AC\Rightarrow a=BD+b\Rightarrow BD=a-b\)
Chu vi tam giác ADB là AD+BD+AB=2.BD+AC=2.(a-b)+b=2a-2b+b=2a-b
Vậy chu vi tam giác ADB là 2a-b
Bài 15: Cho tam giác ABC cân tại A, Â = 80 0 . Gọi O là một điểm ở trong tam giác sao
cho góc OBC = 30 độ ; góc OCB = 10 độ . Chứng minh rằng Tam giác COA cân.
HD: vẽ tam giác đều BCM, tam giác OBC= tam giác AMC(g.c.g) nên CO=CA
Bài 1. Cho tam giác ABC cân tại A có Â = 80o
a) Tính số đo các góc B, C của tam giác ABC
b) Tia phân giác của góc B cắt AC tại D. Tính số đo góc ADB.
Bài 2. Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D ∈ AC), CE vuông góc với AB (E ∈ AB),
BD và CE cắt nhau tại I. M là trung điểm BC. Chứng minh:
a) ∆BDC = CEB.
b) Tam giác IBC là tam giác cân.
c) IE = ID.
d) Ba điểm A, I, M thẳng hàng.
Bài 5. Cho AABC cân tại A, vẽ 2 đường cao BE, CF.
a) Chứng minh tam giác AEF cân.
b) Chứng minh tứ giác BFEC là hình thang cân.
c) cho Â: 10° .Tính các góc của hình thang cân đó.
a) Chứng minh: Tam giác ABE = Tam giác ACF (c.h - g.n)
=> AE = AF (2 cạnh tương ứng)
=> Tam giác AEF cân tại A
b) Tam giác AEF cân tại A
\(\Rightarrow\widehat{AFE}=\dfrac{180^0-\widehat{BAC}}{2}\left(1\right)\)
Tam giác ABC cân tại A
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) => Góc AFE = Góc ABC
Mà 2 góc này đồng vị
=> EF // BC
=> BFEC là hình thang
Lại có: Tam giác ABE = Tam giác ACF (cmt) => BE = CF
=> BFEC là HTC
c) \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{170^0}{2}=85^0\)
Có: BF // BC
=> Góc ABC + Góc BFE = 180 độ
=> Góc BFE = 95 độ
Tương tự tính 2 góc còn lại nhé!
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(AB=AC\) (do tam giác ABC cân tại A)
\(\widehat{BAC}\) chung
\(\widehat{AEB}=\widehat{AFC}=90^0\)
nên \(\Delta AEB=\Delta AFC\left(ch.gn\right)\)
\(\Rightarrow AE=AF\) .Suy ra tam giác AEF cân tại A
b) Có \(\widehat{AFE}+\widehat{AEF}=180^0-\widehat{FAE}\)
\(\Leftrightarrow\)\(2\widehat{AFE}=180^0-\widehat{FAE}\) \(\Leftrightarrow\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}\)
Lại có:\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)
\(\Leftrightarrow\)\(2\widehat{ABC}=180^0-\widehat{BAC}\)\(\Leftrightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{AFE}=\widehat{ABC}\) mà hai góc nằm ở vị trí hai góc đồng vị nên FE//BC
\(\Rightarrow BFEC\) là hình thang mà \(\widehat{FBC}=\widehat{ECB}\) (vì tam giác BAC cân tại A)
nên BFEC là hình thang cân
c) Có \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-10^0}{2}\)\(=85\)\(^0\)
Vậy...