Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuananh Vu
Xem chi tiết
viston
Xem chi tiết
JakiNatsumi
24 tháng 4 2018 lúc 21:28

a5-a = a . ( a4 -1 ) = a(a-1)(a+1)(a2+1)

a(a-1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2

(a-1)a(a+1) là tích ba số tự nhiên liên tiếp nên chia hết cho 3

mà (2,3)=1 ⇒ a(a-1)(a+1)(a2+1) ⋮ (2.3) = 6

*Nếu a = 5q (q ∈ N) =>a(a-1)(a+1)(a2+1) ⋮ 5

Nếu a = 5q + 1 => a - 1 = 5q

Nếu a = 5q + 2 => a2 + 1= (5q+2)2+1=25q2 +5

Nếu a = 5q+3 => a2 + 1= (5q+3)2+1=25q2 +10

Nếu a = 5q+4 => a +1 = 5q +5

Vậy a5 -5 chia hết cho30 với a thuộc Z

Dương Minh Anh
Xem chi tiết
Nguyễn Huỳnh Như
Xem chi tiết
Uchiha Nguyễn
10 tháng 12 2015 lúc 9:04

2011n luôn lẻ

2012n luôn chẵn

2013n luôn lẻ

=> 2011n + 2012n + 2013n luôn chẵn

=> Chia hết cho 2

=> ĐPCM 

Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

Bo Ba Sieu Hang
Xem chi tiết
Đặng Vân Anh 25_11
Xem chi tiết
Đặng Tú Phương
29 tháng 1 2019 lúc 19:46

Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)

Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)

Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)

Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)

P/S: bt làm có bài này thôi :v

shitbo
31 tháng 1 2019 lúc 14:01

3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(

ra nhieu the ai lam het duoc vay ban

Online Math
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2019 lúc 14:23

\(f\left(0\right)=c\)\(f\left(0\right)⋮2011\Rightarrow c⋮2011\)

\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)

\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)

Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)

\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)

Vinh Pham
Xem chi tiết
Kiều Hoàng Vũ
8 tháng 10 2017 lúc 12:01

bài này làm thế nào 

hiền k hộ ta