Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chàng trai cô đơn nơi cu...
Xem chi tiết
Vua Hải tặc trong lớp
21 tháng 3 2024 lúc 20:53

 

=2×(16+112+120+130+...+1

=2×(12×3+13×4+14×5+...+L2×(2×31+3×41+4×51+...+9×101)

=2×(12−13+13−14+14−15+...+19−1

=45

Phạm Tiến Minh
Xem chi tiết
Akai Haruma
9 tháng 11 2021 lúc 7:51

Lời giải:

$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$

$=1-\frac{1}{9}=\frac{8}{9}$

$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$

Bảo Ngân Tạ Ngọc
Xem chi tiết
HT.Phong (9A5)
16 tháng 10 2023 lúc 5:31

\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)

\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)

\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)

\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)

\(A=2\times\dfrac{9}{22}\)

\(A=\dfrac{9}{11}\)

leviethieu
Xem chi tiết
Hồ Thu Giang
10 tháng 9 2016 lúc 12:36

\(a=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)

\(a=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+\frac{1}{3.5}+...+\frac{1}{5.9}\)

\(a=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)

\(a=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(a=2\left(\frac{1}{2}-\frac{1}{10}\right)\)

=> \(a=2.\frac{2}{5}\)

=> \(a=\frac{4}{5}\)

Nana công chúa
10 tháng 9 2016 lúc 12:47

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{45}\)

\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right)\cdot\frac{1}{2}\)

\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)

Hồ Thu Giang
10 tháng 9 2016 lúc 12:47

\(a=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+....+\frac{1}{45}\)

\(a=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+\frac{1}{3.5}+...+\frac{1}{5.9}\)

\(\frac{1}{2}.a=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+\frac{1}{3.5}+...+\frac{1}{5.9}\right)\)

\(\frac{1}{2}.a=\frac{1}{2.1.3}+\frac{1}{2.2.3}+\frac{1}{2.2.5}+\frac{1}{2.3.5}+...+\frac{1}{2.5.9}\)

\(\frac{1}{2}.a=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\)

\(\frac{1}{2}.a=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}.a=\frac{1}{2}-\frac{1}{10}\)

\(\frac{1}{2}.a=\frac{2}{5}\)

\(a=\frac{2}{5}:\frac{1}{2}=\frac{2}{5}.2\)

=> \(a=\frac{4}{5}\)

Võ Bùi Đức hoàng
Xem chi tiết
Trịnh Quang
25 tháng 7 2017 lúc 8:50

= 7536573657865734657365873464876

kiwi nguyễn
Xem chi tiết
svtkvtm
24 tháng 6 2019 lúc 16:38

\(=1-2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{90}\right)=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\right)=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.......-\frac{1}{10}\right)=1-2\left(\frac{1}{2}-\frac{1}{10}\right)=1-\frac{2.4}{10}=1-\frac{4}{5}=\frac{1}{5}\)

Lê Tuấn Nguyên
Xem chi tiết
Trần Phương Anh
Xem chi tiết
Đoàn Đức Hà
30 tháng 8 2021 lúc 21:56

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)

\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\right)\)

\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{4}{5}\)

Khách vãng lai đã xóa
gogitenks
Xem chi tiết
Nguyễn Trần Diệu Linh
4 tháng 5 2018 lúc 22:09

\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{36}\) + \(\dfrac{1}{45}\)

= \(\dfrac{2}{4}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + \(\dfrac{2}{30}\) + ... + \(\dfrac{2}{72}\) + \(\dfrac{2}{90}\)

= \(\dfrac{2}{2.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + \(\dfrac{2}{5.6}\) + ... + \(\dfrac{2}{8.9}\) + \(\dfrac{2}{9.10}\)

= 2 (\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))

= 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\)) = 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\)) = 2 . \(\dfrac{2}{5}\) = \(\dfrac{4}{5}\)