cho a/b=c/d
chứng minh : a^2+b^2/c^2+d^2 = ab/cd
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tỉ lệ thức: a/b=c/d. Chứng minh
a) ab/cd = a^2 - b^2/ c^2-d^2
b) ab/cd = (a-b)^2/ (c-d)^2
a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
Áp dụng dãy tỉ số bằng nhau ta có;
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
=> đpcm
Chúc bạn làm bài tốt
b) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (đpcm)
Cho a/b=c/d.Chứng minh:
a)a^2-b^2/c^2-d^2=ab/cd
b)(a-b)^2/(c-d)^2=ab/cd
Tick+kb <333333333333
Cho a/b = c/d
Chứng minh:
Câu a
a^2-b^2/c^2-d^2=ab/cd
Câu b
(a-b)^2/(c-d)^2=ab/cd
Cho tỉ lệ thức:(a^2+b^2) / (c^2+d^2) = ab/cd . chứng minh : a/b=c/d hoặc a/b=d/c (chứng minh 1 trong 2 )?
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Bài 1. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh a/3a+b= c/3c+d
Bài 2. Cho a/b= c/d. Chứng minh: a. a^2 - b^2/c^2-d^2 = ab/cd
b. (a-b)^2/(c-d)^2 = ab/cd
Bài 3. Tìm x,y biết 2/x=3/y và xy= 96
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)
Bài 2:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)
Bài 3:
Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k
x=2k
Lại có xy=96
\(\Rightarrow2k3k=96\)
\(\Rightarrow6k^2=96\)
\(\Rightarrow k=\pm4\)
Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)
\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)
Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:
(x;y)=(8;12)
(x;y)=(-8;-12)
Cho a/b = c/d . Chứng minh a^2 + b^2 / c^2 + d^2 = ab/ cd
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) ( đpcm )
Cho a/b=c/d. Hẫy chứng minh
a) a2-b2/ c2-d2=ab/cd
b) (a-b)2/(c-d)2= ab/cd
giúp mình nhé
Cho a / b = c / d Chứng minh rằng ab / cd = (a^2 - b^2) / (c^2 - d^2)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=\frac{ab}{cd}\)
Điều PCM
ta có \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
ta có \(\frac{a.b}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
ta có \(\frac{a^2-b^2}{c^2-d^2}=\frac{k^2.b^2-b^2}{k^2.d^2-d^2}=\frac{b^2\left(k-1\right)}{d^2\left(k-1\right)}=\frac{b^2}{d^2}\)
vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
cách 2:
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ad.bc=bc.bd\Rightarrow d^2.ab=b^2.cd\)
\(\Rightarrow\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)
Lại có \(ad=bc\Rightarrow a^2d^2=b^2c^2 \)
\(\Rightarrow a^2d^2+b^2d^2=b^2c^2+b^2d^2\)
\(\Rightarrow d^2\left(a^2+b^2\right)=b^2\left(c^2+d^2\right)\)
\(\Rightarrow\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) ( 2)
Từ (1) và (2) \(\Rightarrow\) nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Đặt
Khi đó ta có :
và
Suy ra :
Ta lại có :
Đặt
Khi đó ta có :
và
Suy ra :
Ta lại có :