tìm a,b Biết
a.b-3.a-2.b
tìm a,b ϵN (a<b)biết
a.b=294:ƯCLN(a;b)=7
Lời giải:Do ƯCLN $(a,b)=7$ nên đặt $a=7x; b=7y$ trong đó $x,y$ là các số tự nhiên thỏa mãn ƯCLN $(x,y)=1$
Khi đó:
$ab=294$
$7x.7y=294$
$xy=6$
Vì $a< b$ nên $x< y$. Do đó từ $xy=6$ ta có $(x,y)=(1,6); (2,3)$
$\Rightarrow (a,b)=(7,42); (14, 21)$
Cho ba tập hợp : A = { -3; -2; -1; 0; 1} , B = { -1; 0; 1; 2; 3 } , C = { -3; -2; -1; 0; 1; 2 ;3 }.
a) Tìm A ∪ B ; A ∩ B ; A ∪ C ; A ∩ C ; B ∪ C .
b) Tìm A ∩ N ; B ∩ N ; A ∪ N ; B ∪ N ; ( A ∩ B ) ∩ N ; ( A ∩ B ) ∩ Z .
Giải nhanh giúp mình với ạ
Bài 2:Cho a,b là 2 số không âm thỏa a+b=2
a, tìm GTNN của P=a nhân b
b, tìm GTNN của Q=a^3+b^3
c, tìm GTLN của R=-a^2-2b+3
1.Cho a+b+c=0.Tìm min p=a3+b3+c3+a2(b+c)+b2(c+a)
2.a,Cho x+y=2. Tìm min A=x2+y2
b,Cho a+b=1.Tìm min B=a3+b3+ab
\(2a\)\(:\)\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm
vì ta cần xy lớn nhất nên x , y không thể khác dấu
\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2
\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2
không chắc nữa
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)
a) Rút gọn
b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{B}>B\)
a) ĐKXĐ: \(a>1;a\ne-1\)
\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)
\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)
\(\Leftrightarrow B=\sqrt{1-a}\)
b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:
\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\)
\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\)
c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\)
\(\Leftrightarrow\sqrt{1-a}>1-a\)
\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\)
\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)
Câu 1: M=(-∞;5] và N=[-2;6). Tìm M∩N,giải thích Câu 2: Cho A=[-4;7], B=(-∞;-2)∪(3;+∞). Tìm A∩B, giải thích Câu 3: Cho A=(-∞;5], B=(0;+∞). Tìm A∩B, giải thích Câu 4. Cho A=(-∞;0)∪(4;+∞) và B=[-2;5]. Tìm A∩B,giải thích Câu 5: Cho M=[-4;7] và N=(-∞;2)∪(3;+∞). Tìm M∩N, giải thích Câu 6: Cho a,b,c là những số thực dương thỏa a
Bài 4: Tìm A giao B ; A hợp B ; A\ B ;B \ A với :
a)A=[-2;0] , B = [1;7] b) A=[-4;-2] , B = (3;7]
c) A=[-3;-2] , B = (1;7) d)A=(- ;-2], B = [3 ;+ )
e)A= [3;+ ) ; B = (-1;4) f)A = (1;4) ;B = (2;6)
a: \(A\cap B=\varnothing\)
\(A\cup B=\left[-2;7\right]\)
A\B=[-2;0]
B\A=[1;7]