Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Em
Xem chi tiết
Akai Haruma
18 tháng 1 2021 lúc 15:16

Lời giải:Do ƯCLN $(a,b)=7$ nên đặt $a=7x; b=7y$ trong đó $x,y$ là các số tự nhiên thỏa mãn ƯCLN $(x,y)=1$

Khi đó:

$ab=294$

$7x.7y=294$

$xy=6$

Vì $a< b$ nên $x< y$. Do đó từ $xy=6$ ta có $(x,y)=(1,6); (2,3)$

$\Rightarrow (a,b)=(7,42); (14, 21)$

 

Lê Ngọc Huyền
Xem chi tiết
•长ąŦ๏Ʀเ•
Xem chi tiết
nguyen thi mai huong
Xem chi tiết
Phạm Thị Thùy Linh
1 tháng 6 2019 lúc 9:46

\(2a\)\(:\)\(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất 

\(\Rightarrow xy\)lớn nhất 

Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm

vì ta cần xy lớn nhất nên x , y không thể khác dấu

\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2 

\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2

không chắc nữa

Carat
Xem chi tiết
Carat
Xem chi tiết
Nguyễn Huy Việt
Xem chi tiết
phamthiminhanh
Xem chi tiết

a) ĐKXĐ: \(a>1;a\ne-1\) 

\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)

\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)

\(\Leftrightarrow B=\sqrt{1-a}\)

b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:

\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\) 

\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)

\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\) 

\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\) 

\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\) 

c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\) 

\(\Leftrightarrow\sqrt{1-a}>1-a\) 

\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\) 

\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)

 

 

寂凝控
Xem chi tiết
phạm nhật linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2021 lúc 12:41

a: \(A\cap B=\varnothing\)

\(A\cup B=\left[-2;7\right]\)

A\B=[-2;0]

B\A=[1;7]