Câu 2: cho tam giác ABC có AB= 10cm, AC = 35 cm. vẽ tia phân giác AD, trên AD lấy điểm E sao cho AE = ¾.AD, tia BE cắt AC tại I, tính độ dài AI
Cho tam giác ABC vuông tại a . Trên tia đối của tia ab lấy điểm d sao cho ab=ad
a) CM tam giác ABC = tam giác adc
b) trên tia đối của tia ac lấy điểm e sao cho ac = ae . Cm dc//be
C) lấy điểm i là trung điểm đc . Cm be = 2.ai
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
cho tam giác ABC có góc B=90. tia phân giác của góc A cắt BC tại D. trên tia đối của AB lấy M sao cho AM=AB. trên tia đối tia AD là E sao cho AE=AD. trên cạnh AC lấy I sao cho AI=AB.tam giác AME= tam giác AID
cm: ME song song BE
Cho tam giác ABC có BC > AB .Trên cạnh BC lấy điểm E sao cho BE =AB , vẽ tia phân giác của góc B cắt AC tại M
a/ CM :ma =ME
b/ Nối BM và AE cắt nhau ở H . CM : BM vuông góc với AE tại H
c/ Kéo dài BA một đoạn AD =EC .CM :DC // AE
Cho tam giác ABC có BC > AB .Trên cạnh BC lấy điểm E sao cho BE =AB , vẽ tia phân giác của góc B cắt AC tại M
a/ CM :ma =ME
b/ Nối BM và AE cắt nhau ở H . CM : BM vuông góc với AE tại H
c/ Kéo dài BA một đoạn AD =EC .CM :DC // AE
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
Suy ra: MA=ME
Cho tam giác ABC nhọn ( AB<AC) , vẽ tia phân giác AD cắt BC tại D , trên cạnh AC lấy điểm E làm sao cho AD=AE, biết BD có độ dài 5cm , hãy tính độ dài đoạn ED. Mọi người giúp mình gấp với ạ!!!!!
Cho tam giác ABC có AB < AC . Trên tia đối của tia AB lấy điểm D sao cho AB = AD . Trên tia đối của tia AC lấy điểm E sao cho AE = AC a) CM : BE = DC
b ) Kẻ tia phân giác góc BDE cắt BC tại I . CM : tam giác BDI cân.
c ) Kẻ tia phân giác góc ACB cắt DI tại F . CM \(2.\widehat{CFD}=\widehat{CED}+\widehat{CBD}\)
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
098765432rtyuiorewerio65yuy5t
yyyyyyyyyyyyyyyyyyyyyyy
Cho tam giác abc nhon ( ab<ac ) . Tia phân giác của bac cắt cạnh bc tại d , trên cạnh ac lấy điểm E sao cho ab=ae . gọi i là giao điểm ad và be , trên tia đối của tia ia lấy điểm k sao cho ia = ik .
CM : tam giác aie = tam gascc aib và tam giác abk cân
Xét ΔAIE và ΔAIB có
AE=AB
góc EAI=góc BAI
AI chung
=>ΔAIE=ΔAIB
Xét ΔBAK có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
cho tam giác abc có góc b=60 độ ,k là trung điểm của ac trên tia đối của tia kb lấy điểm m sao cho mk=mb vẽ các đường phân giác trong ad,ce của tam giác abc cắt nhau tại i tính aie và đường phân giác ngoài đỉnh c cắt tia ad tại h tính abh và cm ac=ae+cd
Cho tam giác ABC có tia phân giác của góc A cắt BC tại D a) chứng minh AD vuông góc với BC b Vẽ be vuông góc với AC tại E ,BE cắt AD tại I trên tia AB lấy điểm F sao cho AF = AE ,chứng minh IF vuông góc với AB c)Chứng minh c,i,f thẳng hàng
Sửa đề: ΔABC cân tại A
a:ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
=>AD vuông góc BC
b: Xét ΔAFI và ΔAEI có
AF=AE
góc FAI=góc EAI
AI chung
=>ΔAFI=ΔAEI
=>góc AFI=góc AEI
=>FI vuông góc AB
c: Xét ΔABC có
BE,AD là đường cao
BE cắt AD tại I
=>I là trực tâm
=>CI vuông góc AB
=>C,I,F thẳng hàng