Xét ΔAIE và ΔAIB có
AE=AB
góc EAI=góc BAI
AI chung
=>ΔAIE=ΔAIB
Xét ΔBAK có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
Xét ΔAIE và ΔAIB có
AE=AB
góc EAI=góc BAI
AI chung
=>ΔAIE=ΔAIB
Xét ΔBAK có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
Bài 8: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD
b) tam giác BMD = tam giác CME.
c) AM là tia phân giác của góc BAC.
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
Cho tam giác ABC, lấy điểm I là trung điểm của cạnh BC. Trên tia đối của tia IA lấy điểm E sao cho IE = IA. a)Chứng minh tam giác AIB = tam giác AIC.
b)Chứng minh AI vuông góc với BC
c)Chứng minh AB//EC
Cho tam giác ABC có AB = AC và AB > BC. M là trung điểm của BC.
a. Chứng minh: tam giác ABM = tam giác ACM
b. Trên cạnh AB lấy D, trên cạnh AC lấy điểm E sao cho AD = AE. Chứng minh: MD = ME
c. Gọi N là trung điểm của BD. Trên tia đối của tian NM lấy điểm K sao cho NK = NM. Chứng minh: K, D, E thẳng hàng
(em mới học đến trường hợp bằng nhau t2 và t3 của tam giác thoi ạ, mng giải giúp theo mấy bài trước với ạ, em cảm ơn)
cho tam giác ABC cân tại A lấy điểm D trên cạnh AB điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của CD và BE. Chứng minh rằng: a)BE=CD b) tam giác KBD=tam giác KCE c)AK là tia phân giác của A d)tam giác KBClaf tam giác cân
Cho tam giác ABC, có AB<AC. Kẻ tia phân giác AD của góc BAC ( D thuộc BC). Trên cạnh AC lấy điểm F sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng:
a) Tam giác BDF= tam giác EDC
b) BF=EC
Cho góc nhon xOy. Trên tia đối của tia Õ lấy diểm A, trên tia đối của tia Oy lấy điểm B sao cho OA=OC. Trên tia By lấy điểm D sao cho AC= BD và OB< OD; OA<OC. a)CM: AD = BC b)CM: BDC= ACD c) Gọi E là giao điểm của AD và BC. CM tam giác EAC= tam giác EBD
cho tam giác ABC. trên tia đối của tia AB lấy điểm D sao cho AB=AD, trên tia đối của tia AC lấy điểm E sao cho AC=AE. một đường đi qua A cắt các cạnh BC và DE lần lượt tại M và N. chúng minh góc ADE=góc ABC; góc AED= góc ACB