a/ Xét tam giác ABE và tam giác ADC có:
Góc A chung
AD=AE(gt)
AB=AC(gt)
=>Tam giác ABE=Tam giác ADC (c.g.c)
->BE=CD( 2 cạnh tương ứng)
b/Ta có:Tam giác ABC có AB=AC-> tam giác ABC cân tại A
Tam giác ABE=tam giác ADC (cmt)
-> Góc DBM= góc ECM (2 góc tương ứng) (1)
mà góc B=góc C ( tam giác ABC cân tại A)
-> Góc MBC=góc MCB
-> Tam giác MBC cân tại M
-> BM=CM(tính chất) (2)
Lại có: AB=AC; AD=AE
=> BD=EC (3)
Từ (1); (2) và (3) suy ra: tam giác BMD=tam giác CME(c.g.c)
c/Xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
Góc ABM= góc ACM(CMt)
BM=CM(cmt)
=> Tam giác ABM=Tam giác ACK (c.g.c)
-> góc BAM=góc CAM(2 góc tương ứng)
hay AM là phân giác góc BAC
a, Xét tam giác ABE và tam giác ACD có
^A _ chung ; AB = AC ; AE = AD
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BD = CD ( 2 cạnh tương ứng )
b, Xét tam giác BMD và tam giác CME
BD = CE ; ^BMD = ^CME ( đối đỉnh ) ; BD = CE
do AB = AC và AD = AE
Vậy tam giác BMD = tam giác CME (c.g.c)