Cho tam giác ABC vuông cân đỉnh A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, sao cho AD=AE. Gọi I là giao điểm của BE và CD, chứng minh:
a, BE=CD
b, tam giác BID = tam giác CIE
c, AI là trung trực của đoạn thẳng BC
d, Qua D vẽ đường thẳng vuông góc với BE, cắt BE ở K, cắt AC ở H, chứng minh: A là trung điểm của đoạn thẳng HC
Giúp mik với mik đang cần gấp!!!!
a) Xét ΔABE vuông tại A và ΔACD vuông tại A có
AB=AC(ΔABC vuông cân tại A)
AE=AD(gt)
Do đó: ΔABE=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BE=CD(Hai cạnh tương ứng)