Tìm nghiệm nguyên pt: x - xy + 2y = 3
Tìm nghiệm nguyên của pt 2y² - x = 2y - xy + 3
\(2y^2-x=2y-xy+3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)
2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha
Chúc học tốt!
tìm nghiệm nguyên của pt : \(x^3-xy-3x+2y+1=0\)
Giải pt nghiệm nguyên:
\(x^3+y^3=5+x^2y+xy^2\)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Tìm nghiệm nguyên của PT: \(x^2y^2-xy=x^2=2y^2\)
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
sorry @Thắng Hoàng mình nhầm đề, phải là
\(x^2y^2-xy=x^2+2y^2\)
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Tìm pt nghiệm nguyên \(x^2y - 5x^2 - xy - x + y - 1 = 0\)
PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)
Với y=5 thì ta không tìm được x thỏa mãn
Với \(y\ne5\), ta có
\(\Delta=-3y^2+26-19\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)
Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)
Giải pt nghiệm nguyên sau
\(x^2y^2+xy+1=x^2\)
\(x^2y^2+xy+1=x^2\)
\(\Leftrightarrow4x^2y^2+4xy+4=4x^2\)
\(\Leftrightarrow\left(2xy+1\right)^2+3=4x^2\)
\(\Leftrightarrow\left(2x-2xy-1\right)\left(2x+2xy+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
TH1: \(\left\{{}\begin{matrix}2x-2xy-1=1\\2x+2xy+1=3\end{matrix}\right.\Leftrightarrow...\)
TH2: \(\left\{{}\begin{matrix}2x-2xy-1=3\\2x+2xy+1=1\end{matrix}\right.\Leftrightarrow...\)
TH3: \(\left\{{}\begin{matrix}2x-2xy-1=-1\\2x+2xy+1=-3\end{matrix}\right.\Leftrightarrow...\)
TH4: \(\left\{{}\begin{matrix}2x-2xy-1=-3\\2x+2xy+1=-1\end{matrix}\right.\Leftrightarrow...\)
Tìm nghiệm nguyên của pt
x3 + y3 - x^2y2 - xy2 = 5
tìm nghiệm nguyên x,y của pt: \(x^2+xy+y^2=x^2y^2\)
Thêm xy vào 2 vế:
\(x^2+2xy+y^2=x^2y^2+xy\)(1)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0
xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)
xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)
vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)