Tính tổng A= 2+2^1+2^2
bai 1 :tính tổng N=1^2+2^2+3^2+...+99^2
bài2: tính tổng A=1+4+9+16+25+36+...+100000
bài3: tính tổng S=1^2+3^2+5^2+...+49^2
bài4:tính tổng S=1^2+3^2+5^2+...+99^2
giúp mik với mik đang cần gấp
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
xin loi mik danh nham nhe bai do la 10000 nhe
giúp mình nha,thanks
uses crt;
var a,m,i:integer;
s:real;
begin
clrscr;
write('Nhap a='); readln(a);
write('Nhap m='); readln(m);
s:=1;
for i:=1 to m do
s:=s+1/sqr(a+i);
writeln(s:4:2);
readln;
end.
1.Tính tổng: A = 1.2 + 3.4 +...+ 2(2n+1)(n+1)
2.Tính tổng: A = 1.3 + 3.7 + 5.11 +...+ 99.199
Bài 2. Tính tổng A= 1^2+2^2+3^2+…+^2
1+2+2^2+2^3+..........+2^11 tính tổng A
A = 1 + 22 + 23 +...+ 211
2A = 22 + 23 +...+ 211 + 212
2A - A = 212 - 1
A = 212 - 1
Đặt \(A=1+2^2+2^3=..+2^{11}\\ \Rightarrow2A=2+2^3+2^4=..+2^{12}\\ \Rightarrow2A-A=2^{12}-1\\ \Rightarrow A=2^{12}-1\)
A=1+2+2^2+2^3+2^4+...+2^60 Tính tổng A
tính tổng sau: A=1/2+1/2^2+1/2^3 +...+1/2^2015+1/2^2016
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16
2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)
2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)
A=\(\frac{1}{2017}-\frac{1}{2}\)
A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)
2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)
A = \(1-\frac{1}{2^{2016}}\)
A=\(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+......+\frac{1}{2^{2016}}\)
\(\frac{1}{2}\)A=\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+.....+\frac{1}{2^{2017}}\)
Trừ vế cho vế ta có :\(\frac{1}{2^1}A=\frac{1}{2^1}-\frac{1}{2^{2017}}\)
=>A=\(1-\frac{1}{2^{2016}}\)
tính tổng \(A=-1^2+2^2-3^2+4^2-...-99^2+100^2\)
tính tổng \(A=-^21+2^2-3^2+4^2-...+\left(-1\right)n^2\)