tìm giá trị nguyên nhỏ nhất biết l 2 - x l= x - 2
giúp mình nha giải hẳn ra
a/ Tìm x để biểu thức A = l x-2/3 l -4 đạt giá trị nhỏ nhất
b/ Tìm giá trị lớn nhất của biểu thức: B = 2- l x+5/6 l
c/ Tìm x để biểu thức C = l x l + l x+2 l đạt giá trị nhỏ nhất
giải ra cách làm luôn nhé
ai giải ra cách làm thì mình tick
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
Tìm số nguyên x để các biểu thức sau đạt giá trị nhỏ nhất.Khi đó giá trị nhỏ nhất là bao nhiêu?
a. A=l x- 5l
b. B=l 5+xl
c. C=l -x + 2l
d. D=lx+1l
Giúp mk với mấy bạn giỏi Toán ơi!Giải rõ lời giải ra nha!
a)Ta thấy: \(\left|x-5\right|\ge0\Rightarrow A\ge0\)
Dấu "=" xảy ra khi \(x=5\)
Vậy \(Min_A=0\) khi \(x=5\)
b)Ta thấy: \(\left|5+x\right|\ge0\Rightarrow B\ge0\)
Dấu "=" xảy ra khi \(x=-5\)
Vậy \(Min_B=0\) khi \(x=-5\)
c)Ta thấy: \(\left|-x+2\right|\ge0\Rightarrow C\ge0\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(Min_C=0\) khi \(x=2\)
d)Ta thấy: \(\left|x+1\right|\ge0\Rightarrow D\ge0\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy \(Min_D=0\) khi \(x=-1\)
Tìm số nguyên x để các biểu thức sau đạt giá trị nhỏ nhất.Khi đó giá trị nhỏ nhất là bao nhiêu?
a) A = l x - 5 l
b) B = l 5 + x l
c) C = l - x + 2 l
d) E = l x + 1 l
Giúp mk nhiều nha!Rõ lời giải cần gấp!
a) ta có \(A\ge0\)
\(\Leftrightarrow\left|x-5\right|\ge0\)
=> \(A_{min}=0\) khi và chi khi x=5
b) \(B\ge0\\ \Leftrightarrow\left|5+x\right|\ge0\Leftrightarrow B_{min}=0\)
Khi và chỉ khi x=-5
c) \(C\ge0\\ \Leftrightarrow\left|-x+2\right|\ge0\\ \Leftrightarrow C_{min}=0\)
Khi và chỉ khi x=2
tìm giá trị nhỏ nhất của biểu thức
A=x/y + y/x + xy/x^2+y^2
giúp mình
Bổ sung điều kiện: \(x,y>0\)
\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)
Áp dụng BĐT cosi:
\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)
Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)
tìm số nguyên x , biết giá trị tuyệt đối của x+x= 2 giải ra giùm mình nha
/x/ +x =2
+ x>/ 0 => x+x =2 => 2x =2 => x =1 thỏa mãn
+ x< 0 => -x +x =2 vô lí
Vậy x =1
tìm tất cả các số nguyên x sao cho A= 2019/ l 2x-6l-4 đạt giá trị nhỏ nhất
nêu cách giải nữa nha
Câu 10: Các số nguyên x và y thuộc tập hợp các số nguyên từ -35 đến 28.
a/ Giá trị lớn nhất của hiệu x-y;
b/ Giá trị nhỏ nhất của hiệu x-y;
c/ Giá trị lớn nhất của tích xy với x khác y;
d. Giá trị nhỏ nhất của tích xy.
Giải hẳn ra nhé!
tìm giá trị lớn nhất của x+1/(x+2)^2
giúp mình ạ
Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)
\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)
tìm giá trị nhỏ nhất của 3.|x+-2/5|+5/2
tìm giá trị nhỏ nhất của A=|x-1/2|+3/4-x
giải ra giùm mình với nhanh nhé
Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)
Ta có : \(\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow Min_A=\frac{5}{2}\)
\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)
\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)
\(\Leftrightarrow x+\frac{-2}{5}=0\)
\(\Leftrightarrow x=\frac{2}{5}\)
`Answer:`
1.
Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)
Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)
2.
Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)