cho P(x)=ax^2+bx+c biết 13a+2c=b . chứng minh rằng p(2).p(-3)
Cho đa thức: f(x)= ax^2+bx=c. Biết 13a+b+2c= 0. Chứng minh f(-2).f(3) > hoặc = 0
cho đa thức F(x)=ax^2+bx+c chứng tỏ rằng F(-2).F(3) bé hơn hoặc bằng 0 biết rằng 13a+b+2c=0
Ta có : f(-2) = 4a - 2b + c
f(3) = 9a + 3b + c
Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)
=> f(-2) = - f(3)
=> [f(-2)]2 = -f(3).f(-2)
mà [f(-2)]2 \(\ge0\)
=> -f(3).f(-2) \(\ge0\)
=> f(-2).f(3) \(\le\)0
Cho đa thức f(x)=ax^2+bx+c với a,b,c thuộc R biết 13a+b +2c=0 . Chứng minh f(-2). f(3)<0
Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn
ta có f(x)=ax2+bx+c
\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)
Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)
=4a-2b+c+9a+3b+c
=13a+b+2c
Lại có 13a+b+2c=0 (giả thiết)
=> f(-2)+f(3)=0
=> f(-2)=-f(3)
=> f(-2).f(3)=f(-2).[-f(-2)]
=-[f(-2)2 ]
Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)
=> f(-2).f(3)\(\le0\)(đpcm)
Ta có:
f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
f(3) = a.32 + b.3 + c = 9a + 3b + c
Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)
Cho f(x) = ax^2 + bx + c với a,b,c là các số hữu tỉ . Chứng tỏ rằng f(-2) . f(3) < hoặc = 0 . Biết rằng 13a + b + 2c = 0
\(\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-b=13a+2c\\f\left(-2\right)=30a+5c\\f\left(3\right)=-30a-5c\end{matrix}\right.\) \(\Rightarrow f\left(-2\right).f\left(3\right)=-\left(30a+5c\right)^2\le0\Rightarrow dpcm\)
cộng f(-2)+f(3)=0(gt)
vậy hai số f(-2) và f(3) là hai số đối nhau hoặc bằng không. thế là ra rồi đấy
Cho f(x) = ax^2 + bx + c với a,b,c là các số hữu tỉ . Chứng tỏ rằng f(-2) . f(3) < hoặc = 0 . Biết rằng 13a + b + 2c = 0
help me ^^
Cho f(x) = ax^1 + bx + c với a,b,c là các số hữu tỉ . Chứng tỏ rằng f(-2) . f(3) < hoặc = 0 . Biết rằng 13a + b + 2c = 0
Ta có:
f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0
Suy ra⎡⎢ ⎢ ⎢ ⎢⎣{f(−2)>0f(3)<0{f(−2)<0f(3)>0⇒f(−2).f(3)<0
vậy......
\(13a+b+2c=0\Rightarrow b=-13a-2c\)
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=\left(4a-2\left(-13a-2c\right)+c\right)\left(9a+3\left(-13a-2c\right)+c\right)\)
\(=\left(4a+26a+4c+c\right)\left(9a-39a-6c+c\right)\)
\(=\left(30a+5c\right)\left(-30a-5c\right)\)
\(=-\left(30a+5c\right)^2\le0\)
-Dấu "=" xảy ra khi \(a=-b=-\dfrac{1}{6}c\)
Cho f(x) = ax2 + bx +c với các số a,b,c là các số hữu tỉ . Chứng tỏ f(-2).f(3) =< 0 Biết rằng 13a + b + 2c =0
ta có : f(-2)=4a-2b+c ; f(3)=9a+3b+c
f(-2)+f(3)=13a+b+2c=0\(\Rightarrow\)f(-2) và f(3) là hai số đối nhau hoặc cùng bằng 0\(\Rightarrow\)f(-2).f(3)=<0
cho đa thức f(x)=ax^2+bx+c biết 13a+b+2c=0
chứng minh:f(-2)*f(3)<hoặc =0
Cho đa thức P(x) = \(ax^2+bx+c\)với a, b, c là các số hữu tỉ biết rằng 13a + b +2c = 0
Chứng tỏ rằng: P(-2).P(3)\(\le0\)