tìm chu vi của một tam giác vuông biết cạnh huyền bằng 13cm và tổng hai cạnh góc vuông bằng 17
tìm hai cạnh của một tam giác vuông biết cạnh huyền bằng 13 cm và tổng hai cạnh góc bằng 17 cm
5 và 12 nha bạn ơi. bộ ba pytago chứ mình không biết làm.
Gọi một cạnh góc vuông là x (x>0)
=> cạnh còn lại là : 17 - x
=> Phương trình theo định lý Py-ta-go là :
x^2 + (17 - x)^2 = 13^2
<=> x^2 + 289 - 34x + x^2 = 169
<=> 2x^2 - 34x + 120 = 0
<=> 2x^2 - 10x - 24x + 120 = 0
<=> 2x(x - 5) - 24(x - 5) = 0
<=> (2x - 24) = 0 hoặc x - 5 = 0
=> x = 12 hoặc x = 5
Vậy độ dài 2 cạnh góc vuông là : 12 cm và 5 cm
hoặc : 5 cm và 12 cm
Bài 8: Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3:4 và chu vi tam giác là 36cm
Bài 9: Tính độ dài cạnh góc vuông của một tam giác vuông cân biết cạnh huyền bằng:
a) 2m b) 10m
Bài 10: Một tam giác vuông có cạnh huyền bằng 52cm, độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Bài 11: Cho tam giác ABC cân tại B, AB=17cm, AC =16cm. Gọi M là trung điểm của AC. Tính BM.
CÁc bạn giúp mình nhé. Cảm ơn các bạn
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 8: Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3:4 và chu vi tam giác là 36cm
Bài 9: Tính độ dài cạnh góc vuông của một tam giác vuông cân biết cạnh huyền bằng:
a) 2m b) 10m
Bài 10: Một tam giác vuông có cạnh huyền bằng 52cm, độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Bài 11: Cho tam giác ABC cân tại B, AB=17cm, AC =16cm. Gọi M là trung điểm của AC. Tính BM.
CÁc bạn giúp mình nhé. Cảm ơn các bạn
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
Bài 11
AM = \(\dfrac{1}{2}\) AC ( vì M là trung điểm AC)
AM = 16 \(\times\) \(\dfrac{1}{2}\) = 8 (cm)
BM \(\perp\)AC ( vì trong tam giác cân đường trung tuyến cũng là đường cao, đường trung trực)
⇒\(\Delta\)MAB vuông tại M
Xét tam giác vuông MAB theo pytago ta có:
AB2 = AM2 + BM2
⇒ BM2 = AM2 - AM2 = 172 - 82 = 225
BM = \(\sqrt{225}\) cm = 15 cm
Kết luận BM = 15 cm
Tính diện tích tam giác vuông biết cạnh huyền bằng 13cm, tổng 2 cạnh góc vuông bằng 17cm.
Gọi 2 cạnh góc vuông là a, b (cm; a,b >0)
Ta có: \(\left\{{}\begin{matrix}a+b=17\left(1\right)\\a^2+b^2=13^2=169\left(Pytago\right)\left(2\right)\end{matrix}\right.\)
(1) <=> (a+b)2 = 289
<=> 2ab = 120
<=> ab = 60
<=> \(S=\dfrac{ab}{2}=\dfrac{60}{2}=30\left(cm^2\right)\)
Tính cạnh góc vuông của một tam giác vuông biết cạnh huyền bằng 13cm, cạnh góc vuông kia bằng 12cm ?
Đặt tên cho \(\Delta\) này là \(\Delta\)ABC, ta có:
AB & BC là cạnh góc vuông.
AC là cạnh huyền.
Áp dụng định lý py-ta-go vào \(\Delta\)ABC, ta có:
AC2 = AB2 + BC2
132 = 122 + BC2
169 = 144 + BC2
BC2 = 169 - 144 = 25
BC = \(\sqrt{25}\) = 5cm.
Vậy cạnh BC = 5cm hay cạnh góc vuông còn lại của \(\Delta\) = 5cm.
Giả sử ∆ABC có ˆA=90∘, BC = 13cm, AC = 12cm
Theo định lý Pytago, ta có: BC2=AB2+AC2
Suy ra: AB2=BC2−AC2=132−122=252
Vậy AB = 5 (cm)
Đặt tam giác đó là tam giác ABC vuông tại A.
Và BC là cạnh huyền; AB và AC là cạnh góc vuông.
Ta có ABC vuông tại A.
nên BC2=AB2+AC2(định lý Pytago)
Do đó: 132=122+AC2
169=144+AC2
AC2=169-144=25
AC=5(cm)
Vậy cạnh góc vuông cần tìm có độ dài là 5cm.
một tam giác vuông có cạnh huyền bằng 17 cm , một cạnh góc vuông bằng 8 cm.
Tính chu vi tam giác đó
Gọi độ dài cạnh góc vuông cần tìm là x
Xét tam giác trên ta có:
=> 82 + x2 = 172
x2 = 172 - 82 = 225 = 152
=> x = 15 cm
Chu vi tam giác là:
17 + 8 + 15 = 40 (cm)
Một tam giác vuông có cạnh huyền bằng 13cm. diện tích tam giác vuông đó là 14cm2. khi đó tổng độ dài hai cạnh góc vuông của tam giác đó là
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...
Một tam giác vuông có một cạnh góc vuông ngắn hơn cạnh huyền 8 cm. Tính độ dài của cạnh huyền, biết chu vi của tam giác bằng 30 cm.
Đặt cạnh huyền của tam giác là x (\(x > 8\))
Theo giải thiết ta tính được cạnh góc vuông là \(x - 8\)
Áp dụng định lý Pitago ta tính được cạnh góc vuông còn lại là \(\sqrt {{x^2} - {{\left( {x - 8} \right)}^2}} = \sqrt {16x - 64} \)
Ta có chu vi của tam giác là \(x + \left( {x - 8} \right) + \sqrt {16x - 64} = 30\)
\(\begin{array}{l} \Leftrightarrow \sqrt {16x - 64} = 38 - 2x\\ \Rightarrow 16x - 64 = {\left( {38 - 2x} \right)^2}\\ \Rightarrow 16x - 64 = 1444 - 152x + 4{x^2}\\ \Rightarrow 4{x^2} - 168x + 1508 = 0\end{array}\)
\( \Rightarrow x = 13\) và \(x = 29\)
Thay \(x = 13\) và \(x = 29\) vào phương trình \(\sqrt {16x - 64} = 38 - 2x\) ta thấy chỉ có \(x = 13\) thảo mãn phương trình
Vậy cạnh huyền có độ dài là 13 cm.
Tính diện tích tam giác vuông biết cạnh huyền bằng 13cm, tổng 2 cạnh góc vuông bằng 17cm.
Gọi 2 cạnh góc vuông và cạnh huyền lần lượt là a, b và c
Áp dụng định lí Pi-ta-go, ta có: \(a^2+b^2=c^2=169\)
Mặt khác a+b=17\(\Rightarrow\left(a+b\right)^2=289\Leftrightarrow a^2+b^2+2ab=289\Leftrightarrow169+2ab=289\Rightarrow ab=60\)
\(\Rightarrow S_{\Delta}=\frac{ab}{2}=\frac{60}{2}=30\)