1/x + 1/y=1/24
Y x 1/2 + y x 1/4 + y x 1/8 = 22/24
`y xx1/2+y xx1/4+y xx1/8=22/24`
`=>y xx (1/2+1/4+1/8)=11/12`
`=> y xx (4/8+2/8+1/8)=11/12`
`=> y xx 7/8=11/12`
`=>y=11/12:7/8`
`=>y=11/12xx8/7`
`=>y=22/21`
`y xx 1/2 + y xx 1/4 + y xx 1/8 = 22/24`
`=> y xx (1/2 + 1/4 + 1/8) = 11/12`
`=> y xx ( 4/8 + 2/8+ 1/8) = 11/12`
`=> y xx 7/8 = 11/12`
`=> y= 11/12 : 7/8`
`=> y=11/12 xx 8/7`
`=> y=22/21`
(x+1)^24 + (y-1)^28 = 0
Tìm x,y
Có \(\left(x+1\right)^{24}\ge0\forall x\)
\(\left(y-1\right)^{28}\ge0\forall y\)
Nên \(\left(x+1\right)^{24}+\left(y-1\right)^{28}\ge0\forall x,y\)
Dấu "=" xảy ra khi \(x=-1,y=1\)
Ta có:
(x + 1)24 \(\ge\) 0 với mọi x \(\in\) R
(y - 1)28 \(\ge\) 0 với mọi y \(\in\) R
\(\Rightarrow\) (x + 1)24 + (y - 1)28 \(\ge\) 0
\(\Rightarrow\) (x + 1)24 + (y - 1)28 = 0 \(\Leftrightarrow\) (x + 1)24 = 0 và (y - 1)28 = 0
*) (x + 1)24 = 0
x + 1 = 0
x = -1
*) (y - 1)28 = 0
y - 1 = 0
y = 1
Vậy x = -1; y = 1
1/x+1/y=1/24
4/x+6/y=1/20
Đặt: \(\frac{1}{x}=a,\frac{1}{y}=b\left(a,b\ne0\right)\)
HPT trở thành: \(\hept{\begin{cases}a+b=\frac{1}{24}\\4a+6b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{120}\\a=\frac{1}{10}\end{cases}}\)nên \(\hept{\begin{cases}x=10\\y=\frac{120}{-7}\end{cases}}\)
cho x,y,z dương thỏa (x+1)(y+1)(z+1) = 24 tim x,y,z
Tìm ( x ; y ) biết : x × ( x + y ) = 1/48 ; y × ( x + y ) = 1/24
Lời giải
Ta có:
\(\left\{{}\begin{matrix}x\left(x+y\right)=\dfrac{1}{48}\\y\left(x+y\right)=\dfrac{1}{24}\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y\right)+y\left(x+y\right)=\dfrac{1}{48}+\dfrac{1}{24}\)
\(\Leftrightarrow\left(x+y\right)^2=\dfrac{1}{48}+\dfrac{2}{48}=\dfrac{3}{48}=\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=\dfrac{1}{4}\\x+y=-\dfrac{1}{4}\end{matrix}\right.\)
Với \(x+y=\dfrac{1}{4}\) thì:
\(\left\{{}\begin{matrix}x=\dfrac{1}{48}:\dfrac{1}{4}=\dfrac{1}{12}\\y=\dfrac{1}{24}:\dfrac{1}{4}=\dfrac{1}{6}\end{matrix}\right.\)
Với \(x+y=-\dfrac{1}{4}\) thì:
\(\left\{{}\begin{matrix}x=\dfrac{1}{48}:-\dfrac{1}{4}=-\dfrac{1}{12}\\y=\dfrac{1}{24}:-\dfrac{1}{4}=-\dfrac{1}{6}\end{matrix}\right.\)
Cho: x (x+y) = 1/ 48 và y( x+y) = 1/24
Tìm x và y
X(x-y)+y(y-x) với x=124,y=24,z=2
(x-3)^2-(x+1)^3+12x(x-1) với x=-1/2
\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2=\left(124-24\right)^2=100^2=10000\)
\(\left(x-3\right)^2-\left(x+1\right)^3+12x\left(x-1\right)=\frac{49}{4}-\frac{1}{8}+\frac{\left(-6\right).\left(-3\right)}{2}\)
\(=\frac{97}{8}+9=\frac{169}{8}\)
X(X-Y)+Y(Y-X)=X2 -XY +Y2 -XY=(X-Y)2 =(124-24)2 =1002 =10000
(x-3)2 -(x+1)3 +12x(x-1)=x2 -6x+9-x3 -3x2 -3x-1+12x2 -12x=-x3 +10x2 -9x+8
Vẽ đồ thị hàm số:
1, y = 1/4x mũ 2
2, y = -1/4 x mũ 2
3, y = -2 x mũ 2
4, y = -1/2 x mũ 2
5, y = 3 x mũ 2
1.(x+1)^2 -y-2x-2
2.3x^3-3xy-5x+5y
3.(x+2)^2-y^2
4.(x+5)^2-y^2
5.16x^2-(x+1)^2
tìm x và y thỏa mãn
x.(x+y)=1/48
y.(x+y)=1/24