Cho các số không âm a,b,c,d thay đổi thỏa mãn a +b+c+d=6.tìm GTNN :a^3+b^3+c^3+d^3.
Cho 3 số không âm thỏa mãn a+b+c=1 tìm GTNN của P=a^6 + b^6 + c^6
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
a,b,c là các số thực thay đổi và thỏa mãn abc=-2, a+b+c=0 tìm GTNN của bt F=(ab+bc+ac-a^2-b^2-c^2)/(a^3+b^3+c^3)
\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương
Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)
\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)
\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)
\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị
Bài 1:Cho a,b,c là các số thực dương thỏa mãn $a^3+b^3+c^3−3abc=1$ .Tìm minP=$a^2+b^2+c^2$
Bài 2: Cho a,b,c,d thỏa mãn a>b>c>d và ac+bd=(b+d+a−c)(b+d−a+c) . Chứng minh ab+cd là hợp số
Bài 3:
1. Tìm hai số nguyên dương a và b thỏa mãn $a^2+b^2=[a,b]+7(a,b)$(với [a,b]=BCNN(a,b);(a,b)=UCLN(a,b))
2. Cho ΔABC thay đổi có AB=6,AC=2BC.Tìm giá trị lớn nhất của diện tích ΔABC.
Bài 4: Cho a,b,c là các số nguyên tố thỏa mãn: $20abc<30(a+b+c)<21abc$. Tìm a,b,c.
Cho a,b,c là các số thực không âm thỏa mãn a+b+c=3.
Tìm GTNN của biểu thức: \(Q=a^3+b^3+c^3\)
Ta co:
\(Q=a^3+b^3+c^3=\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)-6\ge3\left(a+b+c\right)-6=3\)
Dau '=' xay ra khi \(a=b=c=1\)
Vay \(Q_{min}=3\)khi \(a=b=c=1\)
Cho 4 số không âm a.b.c.d thỏa mãn ab+bc+cd+da=1. Chứng minh rằng:
\(\frac{a^3}{b+c+d}+\frac{b^3}{c+d+a}+\frac{c^3}{d+a+b}+\frac{d^3}{a+b+c}\ge\frac{1}{3}\)
Áp dụng BĐT cauchy-schwarz :
\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)
\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)
nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)
Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)
do đó \(VT\ge\frac{1}{3}\)
Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)
Cho 4 số nguyên ko âm a,b,c,d thỏa mãn \(a^2+2b^2+3c^2+4d^2=36,2a^2+b^2-2d^2=6\). Tìm GTNN của \(Q=a^2+b^2+c^2+d^2\)
từ hệ điều kiện, bằng cách cộng theo vế ta được: pmin=14 đạt được khi (2) ta nhận được 0≤b≤2⇔[b=0b=2Khi đó:-Với (2) có dạng a thỏa mãn.-Với {a^2+3c^2=28, 2a^2=2 mà ⇒{a=1c=3Vậy a=1,b=2,c=3,d=0
Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)
\(\Leftrightarrow3Q-d^2=42\)
\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)
\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)
Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)
TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)
TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)
Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)
Cho a;b;c là các số thực không âm thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm min và max của \(A=a^3+b^3+c^3\)
\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)
Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(A_{min}=3\) khi \(a=b=c=1\)
Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)
\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)
Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)
\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)
\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị
cho ba số thực không âm thỏa mãn \(a^3+b^3+c^3-3abc=1\) tìm gtnn của \(B=a^2+b^2+c^2\)