Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hh hh
Xem chi tiết
Yukino Yukinoshita
Xem chi tiết
Nguyễn Phạm Châu Anh
31 tháng 3 2017 lúc 20:24

\(\frac{a}{n\left(n+a\right)}\left(n,a\in N\right)\)

\(=\frac{n+a-n}{n\left(n+a\right)}\)

\(=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)

\(=\frac{1}{n}-\frac{1}{n+a}\)

\(\rightarrowđpcm.\)

lê nho nhân mã
12 tháng 5 2017 lúc 19:52

vl hay nhưng hỏi câu này mới cực hay

rút gọn

a.a.a.a.a.a.a.a.a=bao nhiêu

Pham Quoc Cuong
29 tháng 12 2017 lúc 22:28

Ta có: \(\frac{a}{n\left(n+a\right)}\left(a,n\in N\right)\)

\(=\frac{a+n-n}{n\left(n+a\right)}\)

\(=\frac{a+n}{n\left(a+n\right)}-\frac{n}{n\left(a+n\right)}\)

\(=\frac{1}{n}-\frac{1}{n+a}\)

\(\Rightarrow dpcm\)

GoKu Đại Chiến Super Man
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Hạ Vy
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2020 lúc 19:03

Ta có:

\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)

\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)

....

\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)

Nhân vế với vế:

\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)

\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)

Minh Minh
Xem chi tiết
👁💧👄💧👁
27 tháng 4 2019 lúc 20:45

Có: \(\frac{1}{n}-\frac{1}{n+a}\\ =\frac{n+a-n}{n\cdot\left(n+a\right)}\\ =\frac{a}{n\left(n+a\right)}\)

Vậy ta được đpcm.

NBH Productions
Xem chi tiết
Đào Anh Phương
Xem chi tiết
Nguyễn Linh Chi
25 tháng 5 2020 lúc 19:21

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 5 2020 lúc 1:46

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 5 2020 lúc 1:50

c) Ta chứng minh 

\(1^3+2^3+3^3+...+n^3=\frac{n^2.\left(n+1\right)^2}{4}\)(@)  đúng với mọi số tự nhiên n khác 0 

+) Với n = 1 ta có: \(1^3=\frac{1^2\left(1+1\right)^2}{4}\)đúng 

=> (@) đúng với n = 1 

+) G/s n(@) đúng cho đến n 

+) Ta chứng minh (@) với n + 1 

Thật vậy: 

\(1^3+2^3+3^3+...+n^3+\left(n+1\right)^3=\frac{n^2.\left(n+1\right)^2}{4}+\left(n+1\right)^3\)

\(=\frac{\left(n+1\right)^2\left(n^2+4n+4\right)}{4}=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

Khách vãng lai đã xóa
Funny Suuu
Xem chi tiết
Nguyễn Nhật Minh
9 tháng 12 2021 lúc 18:58

65434:234 bằng bảo nhiêu đó

Khách vãng lai đã xóa