Tìm số nguyên n để phân số sau có giá trị nguyên:n-5/n-3
Để n-5/n-3 là số nguyên thì n-5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>(n-3)-(n-5) chia hết cho n-3 => 2 chia hết cho n-3
Do n thuộc Z nên n-3 cũng thuộc Z
=> n-3 = 1; 2; -1; -2
=> n = 4; 5; 2; 1
Thử lại thoả mãn.
Vậy n = 4; 5; 2; 1
(n-5) : (n-3)
⇒ (n-5) - (n-3) : (n-3)
⇒ -8 : (n-3)
n-3 ∈ Ư (8) = { +-1; +-2; +-4; +-8 }
Lập bảng
n-3 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -5 | -1 | 1 | 2 | 4 | 5 | 7 | 11 |
chúc bn học tốt
có j sai mong mng góp ý
(n-5) : (n-3)
⇒ (n-5) - (n-3) : (n-3)
⇒ -8 : (n-3)
n-3 ∈ Ư (8) = { +-1; +-2; +-4; +-8 }
Lập bảng
n-3 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -5 | -1 | 1 | 2 | 4 | 5 | 7 |
11 |
Tìm các giả trị nguyên n để các phân số sau có giá trị là số nguyên:
n^2+3n-1/n-2
Để phân số có giá trị là số nguyên thì \(n^2+3n-1⋮n-2\)
\(\Leftrightarrow n^2-2n+5n-10+9⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{3;1;5;-1;11;-7\right\}\)
tìm các số nguyên n để phân số sau có giá trị nguyên n-5/n-3
Để n−5/n−3 có giá trị nguyên thì:
n−5⋮n−3
⇔(n−3)−2⋮n−3
Vì n−3⋮n−3
⇒−2⋮n−3
⇔n−3 ∈Ư(2)= {±1;±2}
⇔n∈ {4;2;5;1}
Vậy để n−5/n−3 có giá trị nguyên thì: x∈ {1;2;4;5}
tìm các số nguyên n để phân số sau có giá trị nguyên n-5/n-3
n-5/n-3 nguyên
\(\Leftrightarrow\) n-5 = n-3-2 chia hết cho -3
\(\Leftrightarrow\)2 chia hết cho n-3
\(\Leftrightarrow\)n -- 3 thuộc Ư (2) = {-1;1;-2;2}
\(\Leftrightarrow\) n \(\in\) {2;4;1;5}
\(\dfrac{n-5}{n-3}\)nguyên
⇔ n-5 = n-3-2 ⋮-3
⇔2 ⋮ n-3
⇔n -- 3 ∈Ư (2) = {-1;1;-2;2}
⇔ n ∈ {2;4;1;5}
vậy n∈ {2;4;1;5}
\(\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) có giá trị nguyên thì \(n-3\) là ước của \(2\)
\(\Rightarrow n-3\in\) \(\left\{-2;-1;1;2\right\}\)
*) \(n-3=-2\)
\(n=1\) (nhận)
*) \(n-3=-1\)
\(n=2\) (nhận)
*) \(n-3=1\)
\(n=4\) (nhận)
*) \(n-3=2\)
\(n=5\) (nhận)
Vậy \(n=1;n=2;n=4;n=5\)
tìm các số nguyên n để phân số sau có giá trị nguyên là : n - 5/ n -3
A=n-5/n-3 A ∈ Z (1)
n ∈ Z (2)
(1)(2)→n-5 ⋮ n-3
Ta có: n-5 = (n-3)-2
Do n-3 ⋮ n-3 mà (n-3)-2 ⋮ n-3
→ 2 ⋮ n-3
→ n-3 ∈ Ư(2) ∈ {1; -1; 2; -2}
→ n-3 ∈ {...} (tự làm nốt nha)
a) Với giá trị nào của n thì phân số sau có giá trị là số nguyên A= 3/n-5
b) Cho phân số n+9/n-6 ( n € Z , n > 6 ) . Tìm các gái trị của n để phân số có giá trị là số nguyên dương
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
tìm số nguyên n để các phân số sau có giá trị nguyên
A=n-5/n-3 B=2n+1/n+1
C=4n+1/3n-5 D=7n-6/3-2n
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
b) ĐKXĐ: \(n\ne-1\)
Để phân số \(B=\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(\Leftrightarrow2n+2-1⋮n+1\)
mà \(2n+2⋮n+1\)
nên \(-1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa)
Vậy: \(n\in\left\{0;-2\right\}\)
c) ĐKXĐ: \(n\ne\dfrac{5}{3}\)
Để phân số \(C=\dfrac{4n+1}{3n-5}\) là số nguyên thì \(4n+1⋮3n-5\)
\(\Leftrightarrow12n+3⋮3n-5\)
\(\Leftrightarrow12n-20+23⋮3n-5\)
mà \(12n-20⋮3n-5\)
nên \(23⋮3n-5\)
\(\Leftrightarrow3n-5\inƯ\left(23\right)\)
\(\Leftrightarrow3n-5\in\left\{1;-1;23;-23\right\}\)
\(\Leftrightarrow3n\in\left\{6;4;28;-18\right\}\)
\(\Leftrightarrow n\in\left\{2;\dfrac{4}{3};\dfrac{28}{3};-6\right\}\)
mà n nguyên
nên \(n\in\left\{2;-6\right\}\)
Vậy: \(n\in\left\{2;-6\right\}\)