Rút gọn
D = 3/2^2 * 8/3^2 * 15/4^2 *........* 899/30^2
Rút gọn
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}......\frac{899}{30^2}\)
Hộ!
Đặt \(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
\(\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Rightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Rightarrow A=\frac{\left(1.2.3...29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(\Rightarrow A=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Vậy \(A=\frac{31}{60}\)
Rút gọn các biểu thức sau:
a) A = 1+1/3^2+1/3^3+...+1/3^n
b) B = 1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100
c) C = 3/2^2 x 8/3^2 x 15/4^2 ... 899/30^2
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)
Rút gọn phân số
a,\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}.\)
b,\(C=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right).....\left(\frac{1}{99}+1\right)\)
c,\(D=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
3/2^2 * 8/3^2 * 15/4^2*......*899/30^2
Đặt \(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.......\frac{899}{30^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}........\frac{29.31}{30^2}\)
\(A=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right).....\left(29.31\right)}{2^2.3^2.4^2.....30^2}\)
Để dễ rút gọn,ta viêt tử số của A dưới dạng tích các số tự nhiên liên tiếp:
\(A=\frac{\left(1.2.3.......29.29\right).\left(3.4.5.........30.31\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)........\left(30.30\right)}\)
\(A=\frac{1.2.3.......28.29}{2.3.4.........29.30}.\frac{3.4.5.....30.31}{2.3.4.......29.30}=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Vậy A=31/60
(3/2^2)*(8/3^2)*(15/4^2)*..............*(899/30^2)
Tính:
3/2^2 . 8/3^2 . 15/4^2 ..... 899/30^2
bạn xem ở đây nhá http://olm.vn/hoi-dap/question/86647.html
Sai rồi, để tôi sửa lại:
\(\frac{3}{2^2}.\frac{8}{3^2}.....\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.....\frac{29.31}{30.30}\)
\(=\frac{1.2.3.....31}{2.3.4.....30}.\frac{3.4.5....29}{2.3.4....30}=31.\frac{1}{60}=\frac{31}{60}\)
tính: Q=3/2^2. 8/3^2. 15/4^2. ... . 899/30^2
\(Q=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.......................\dfrac{899}{30^2}\)
\(\Leftrightarrow Q=\dfrac{1.3.2.4.3.5........29.31}{2.2.3.3......30.30}\)
\(\Leftrightarrow Q=\dfrac{\left(2.3.....29.30\right)\left(3.4.5....29.31\right)}{\left(2.3.4....30\right)\left(2.3.4....30\right)}\)
\(\Leftrightarrow Q=\dfrac{31}{2.30}\)
\(\Leftrightarrow Q=\dfrac{31}{60}\)
A=\(\dfrac{3}{2^2}\)x\(\dfrac{8}{3^2}\)x\(\dfrac{15}{4^2}\)......\(\dfrac{899}{30^2}\)=\(\dfrac{1.3.2.4.3.5....29.31}{2.2.3.3.4.4....30.30}\)= (\(\dfrac{2.3....29.30}{2.3....20.30}\)).(\(\dfrac{3.4.5....29.31}{2.3.4....29.30}\))=\(\dfrac{31}{2.30}\)=\(\dfrac{31}{60}\)
Tính nhanh
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
= \(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
= \(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
=\(\dfrac{\left(1.2.3.....29\right).\left(3.4.5......31\right)}{\left(2.3.4......30\right).\left(2.3.4.....30\right)}\)
= \(\dfrac{1.31}{2.30}\)
= \(\dfrac{31}{60}\)
Ta có: \(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}\cdot...\cdot\dfrac{899}{30^2}\)
\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot2^2}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\left(2\cdot3\cdot4\cdot...\cdot30\right)}\)
\(=\dfrac{1\cdot31}{2\cdot30}=\dfrac{31}{60}\)
tính
3/2^2*8/3^2*15/4^2*...*899/30^2