Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ShuShi
Xem chi tiết
Hung nguyen
21 tháng 1 2017 lúc 20:31

Cái x đầu tiên không phải x2 à. Còn cái vế phải là hỗn số hả

Đại gia không tiền
Xem chi tiết
Ngô Phương
Xem chi tiết
Đỗ Ngọc Hải
17 tháng 2 2018 lúc 14:11

a) \(xy+3x=5y-2\)
\(\Leftrightarrow x\left(y+3\right)=5y-2\)
\(\Leftrightarrow x=\frac{5y-2}{y+3}\)
\(\Leftrightarrow x=\frac{5\left(y+3\right)-17}{y+3}\)
\(\Leftrightarrow x=5-\frac{17}{y+3}\)
Do x nguyên, y nguyên nên y+3 là Ư(17)

Ta có bảng:
 

y+3-17-1117
y-20-4-214
x622-124


Vậy (x;y) là (6;-20);(22;-4);(-12;-2);(4;14)  

b) \(\Leftrightarrow\frac{\frac{99.100.101}{3}}{100x^2+\frac{99.100}{2}}=\frac{6666}{131}\Rightarrow x=\pm4\)

MerJason
20 tháng 5 2018 lúc 21:27

cau b hoi tat nhi

Lê Đan Huyền
Xem chi tiết
Đức Phạm
22 tháng 7 2017 lúc 8:46

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

Thành Trần Xuân
22 tháng 7 2017 lúc 8:38

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

Die Devil
22 tháng 7 2017 lúc 8:42

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{3}-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{6}\)

I am➻Minh
Xem chi tiết
Trần Thanh Phương
5 tháng 10 2018 lúc 19:19

Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

Từ điều kiện trên ta có :

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)

\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(50x=1-\frac{1}{100}\)

\(50x=\frac{99}{100}\)

\(x=\frac{99}{5000}\)

tth_new
5 tháng 10 2018 lúc 19:33

Do \(\left|a\right|\ge0\forall a\) nên:

\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)

\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)

Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)

\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)

\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)

gàdsfàds
13 tháng 10 2018 lúc 17:56

tưởng là có 99x lận mà

Phan Minh Sang
Xem chi tiết
ST
10 tháng 7 2018 lúc 9:17

a, \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)

\(\Rightarrow\frac{1}{2^x}+\frac{1}{2^x}\cdot\frac{1}{16}=17\)

\(\Rightarrow\frac{1}{2^x}\left(1+\frac{1}{16}\right)=17\)

\(\Rightarrow\frac{1}{2^x}\cdot\frac{17}{16}=17\)

\(\Rightarrow\frac{1}{2^x}=17:\frac{17}{16}=\frac{1}{16}=\frac{1}{2^4}\)

=> x = 4

b, Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....;\left|x+\frac{1}{99.100}\right|\ge0\)

\(\Rightarrow\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)

\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)

\(\Rightarrow99x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=100x\)

\(\Rightarrow100x-99x=1-\frac{1}{100}\)

\(\Rightarrow x=\frac{99}{100}\)

Limited Edition
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Dương Đường Hương Thảo
19 tháng 3 2018 lúc 20:22

đề chưa đầy đủ

Nguyễn Tiến Đạt
19 tháng 3 2018 lúc 20:26

à đề thiếu tổng các giá trị tuyệt đối ở trên =100x

vulethaibinh
19 tháng 3 2018 lúc 20:31

What wrong with you ?

Nguyễn Thị Thu Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2020 lúc 15:30

Bài 1:

a) Ta có: \(\frac{2^8\cdot4\cdot13+2^7\cdot8\cdot65}{2^9\cdot39}\)

\(=\frac{2^8\cdot4\cdot13+2^8\cdot4\cdot13\cdot5}{2^9\cdot39}\)

\(=\frac{2^{10}\cdot13\left(1+5\right)}{2^9\cdot13\cdot3}=\frac{6}{3}=2\)

b) Đặt \(A=4+2^2+2^3+2^4+...+2^{20}\)

Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)

\(\Rightarrow2A=2^3+2^3+2^4+...+2^{21}\)

Ta có: \(2A-A=2^3+2^{21}-2^2-2^2=8+2^{21}-8=2^{21}\)

hay \(A=2^{21}\)

Vậy: \(4+2^2+2^3+2^4+...+2^{20}=2^{21}\)

Khách vãng lai đã xóa