Chứng minh
Sn=1^2+2^2+3^2+.....+n^2=n.(n+1).(2n+1):6
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
Chứng minh
Sn=1^2+2^2+3^2+ . . . +n^2=n.(n+1).(2n+1)/6
S=\(^{1^2}\)+\(^{2^2}\)+\(^{3^2}\)+....+ \(^{n^2}\)
S=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)
S=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n
S= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )
S= \(\frac{n\left(n+1\right)}{2}\) + \(\frac{n\left(n+1\right)\left(n-1\right)}{3}\)
S= \(\frac{3n\left(n+1\right)+2n\left(n+1\right)\left(n-1\right)}{6}\)
S= \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=1,ta dc VT(1)=Vp(1).Mệnh đề đúng với n=1
Giả sử n=k thỏa mãn mênh đề (1)
1^2+2^2+3^2+…+k^2= k(k+1)(2k+1)/6
Xét n=k+1,thay vào (1) ta được
1^2+2^2+…+k^2+(k+1)^2= (k+1)(k+2)(2k+2)/6
=> k(k+1)(2k+1)/6+(k+1)^2= (k+1)(k+2)(2k+2)/6
=> mệnh đề đúng với n=k+1
Theo phương pháp quy nạp toán học =>1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
ai nhanh mình tick trước 9 giờ
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
chị thương ơi gửi em đề bài câu 9,10 toán bài 2
Chứng minh A=2n^2(n+1)-2n(n^2+n+3) chia 6 với n thuộc N
\(A=2n^2\left(n+1\right)-2n\left(n^2+n+3\right)\)
\(A=2n\left[n\left(n+1\right)-\left(n^2+n+3\right)\right]\)
\(A=2n\left(n^2+n-n^2-n-3\right)\)
\(A=2n\cdot\left(-3\right)\)
\(A=-6n⋮6\)(đpcm)
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
Chứng minh: 12+22+32+...+n2=n.(n+1)(2n+1)/6
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp