Giải phương trình
1/ \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
2/ \(^{x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}}\)
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
f.
$x^2-(\sqrt{2}+\sqrt{8})x+4=0$
$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$
$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$
$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$
$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$
$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$
g.
$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$
$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$
$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$
$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$
$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
ĐKXĐ: ...
\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)
\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)
\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)
Thế xuống pt dưới:
\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)
\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)
Xét (1) với \(x\ge\dfrac{3}{2}\):
\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)
\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Giải phương trình vô tỉ :
a) \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
b) \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
c) \(\sqrt{3x^2-4x+2}+\sqrt{3x+1}+\sqrt{2x-1}+6x^3-7x^2-3=0\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải phương trình:
1)\(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2)\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\)
3)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\left(vớix>0\right)\)
4)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
5)\(4x^2-11x+10=\left(x+1\right)\sqrt{2x^2-6x+2}\)
giải phương trình :
a, \(2x^2-11x+21-3\sqrt[3]{4x-4}=0\)
b, \(\left(3x-2\right)\sqrt{x+1}-x^2-x-2=0\)
c, \(x+4-2\left(\dfrac{x+2}{x-1}\right)\sqrt{\dfrac{x-1}{x+2}}=0\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)
\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)
\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))
\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)
\(\Rightarrow x^3+7x^2+4x-24=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)
a.
\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)
Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)
Ta có:
\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
b.
ĐKXD: \(x\ge-1\)
Phương trình: \(2\left(x+1\right)-\left(3x-2\right)\sqrt[]{x+1}+x^2-x=0\)
Đặt \(\sqrt[]{x+1}=t\ge0\)
\(\Rightarrow2t^2-\left(3x-2\right)t+x^2-x=0\)
\(\Delta=\left(3x-2\right)^2-8\left(x^2-x\right)=\left(x-2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x-2+x-2}{4}=x-1\\t=\dfrac{3x-2-x+2}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x+1}=x-1\left(x\ge1\right)\\\sqrt[]{x+1}=\dfrac{x}{2}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=x^2-2x+1\left(x\ge1\right)\\x+1=\dfrac{x^2}{4}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2+2\sqrt[]{2}\end{matrix}\right.\)