cho tam giác vuông ABC phân giác BD.Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E.Trên BC lấy I sao cho IE=IC.CMR AI+BH>9.Biết AB=6,BC=10
cho tam giác vuông ABC phân giác BD.Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E.Trên BC lấy I sao cho IE=IC.CMR AI+BH>9.Biết AB=6,BC=10
BD với BC là 1 sao lại "Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E" vậy bạn ?????
cho tam giác vuông ABC phân giác BD.Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E.Trên BC lấy I sao cho IE=IC.CMR AI+BH>9.Biết AB=6,BC=10
Ai làm được câu này tôi cho 10 like
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
cho tam giác ABC vuông tại A phân giác BD.Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E.Trên BC lấy I sao cho EI=EC.CMR AI+BH>9.Biết AB=6,BC=10
cho tam giác ABC vuông tại A phân giác BD.Từ A vẽ đường vuông góc với BD cắt nhau tại Hvà cắt BC tại E.Trên BC lấy I sao cho EI=EC.CMR AI+BH>9.Biết AB=6,BC=10
Toán lớp 7
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)
a) Xét tam giác BHA và tam giác BAC có
góc BHA= góc BAC (=90)
góc B chung
=> tam giác BHA đồng dạng tam giác BAC (g.g)
Cho tam giác ABC vuông tại A có AB<AC,đường phân giác BD.Từ D vẽ DE vuông góc vưới BC tại E
a,CMR: tam giác ABD=tam giác EBD
b,Tia ED cắt tia BA tại N.CMR AN=EC
c,CMR BD vuông góc với NC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔDAN vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADN=góc EDC
=>ΔDAN=ΔDEC
=>AN=EC
c: BA+AN=BN
BE+EC=BC
mà BA=BE; AN=EC
nên BN=BC
=>ΔNBC cân tại B
mà BD là phân giác
nên BD vuôg góc NC
Cho tầm giác ABC vuông tại A,AB<AC.Phân giác góc B cắt AC tại E.Trên BC lấy điểm I sao cho BA=BI.BE cắt AI tại H
a)Chứng minh:tam giác BAE=tam giác BIE
b)chứng minh:EI vuông góc với BC
c)chứng minh:BE vuông góc với AI
`a,` Xét Tam giác `BAE` và Tam giác `BIE` có:
`BA = BI (g``t)`
\(\widehat{ABE} =\widehat{IAE}\) (tia phân giác \(\widehat{ABI}\))
`AE` chung
`=>` Tam giác `BAE =` Tam giác `BIE (c-g-c)`
`b,` vì Tam giác `BAE =` Tam giác `BIE` (a)
`=>` \(\widehat{BAE}=\widehat{BIE}=90^0\) (2 góc tương ứng)
`=> \(EI\perp BC\)
`c,` Xét Tam giác `BAH và` Tam giác `BIH`
`BA=BI (g``t)`
\(\widehat{BAH}=\widehat{BIH}\) (tia phân giác \(\widehat{ABI}\))
`AH` chung
`=>` Tam giác `BAH =` Tam giác `BIH (c-g-c)`
`=>` \(\widehat{BHA}=\widehat{BHI}\) (2 góc tương ứng)
mà 2 góc này ở vị trí kề bù
`=>`\(\widehat{BHA}+\widehat{BHI}=180^0\)
`=>` \(\widehat{BHA}=\widehat{BHI} =\) \(\dfrac{180}{2}=90^0\)
`=>` \(BE\perp AI\) (đpcm)
*Hình đây nha cậu, xl nãy làm bài mình quên gửi:').
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).