không làm phép tính, so sánh 99x 99 với 98 x 100
bạn nào giải được câu này :so sánh tích của 99 và 99 với tích của 98 và 100 (ko làm phép nhân)
Ta có:
99.99= (98+1) . 99 = 98.99+99
98.100 = 98.( 99+1) = 98.99 + 98
Do 98.99+99 > 98.99 + 98
=> 99.99 > 98.100
Không làm phép nhân hãy so sánh tích: 99 x 99 với tích 98 x 100
98 x 99 = (98 + 1) x 99 = 98 x 99 + 99
98 x 100 = 98 x (99 + 1) = 98 x 99 + 98
Vậy 99 x 99 > 98 x 100
bằng nhau vì 99-1 = 98 còn 99+ 1 = 100
Tính nhanh
99x100+99x99+99x98+...+99x+99
Tính 99x100+99x99+99x98+...+99x+99 tại x=9
Bài 2.cho P(x)=100x^100+ 99x^99+ 98x^98+.....+ 2x^2+x. Tính P(1)
P(1)=100+99+...+2+1=\(\frac{100\left(100+1\right)}{2}=5050\)
thay x=1
ta có F(1)=100.1^100+99.1^99+98.1^98+...+2.1^2+1
=100+99+98+...+1
=1+2+..+98+99+100
=(100+1).100:2=5050
=>F(x)=5050
cho P(x)=100x100+99x99+98x98+...+2x2+x. Tính P(1)?
\(P\left(1\right)=100+99+..+2+1\)
\(101.50=5050\)
So sánh giá trị biểu thức A= 3/4 + 8/9 + 15/16+...+ 9999/10 000 với các số 98 và 99.
Giúp mik với mik mới so sánh được với 98 thôi. Mik ra kq là A > 99 - 99/100 -> A > 98 chứ chưa so sánh đc với 99.
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
Giải:
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\)
\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{8}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{10000}\right)\)
\(A=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{19}+...+\dfrac{1}{10000}\right)< 99\)
\(\Rightarrow A< 99\left(đpcm\right)\)
Chúc bạn học tốt!
cho f(x) = 100x^100+ 99x^99+98x^98+...+2x^2+x
CHo P(x)=100x100+99x99+98x98+......+2x2+x
bài 1: Cho A ( x ) = x99 - 100x98 + 100x97 - 100x96 +...+ 100x-1 . Tính A ( 99 )
bài 2: Cho P(x) = 100x100 + 99x99 +...+ 2x2 + x . TÍnh P(1)
bài 1
A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)
= \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)
thay 99=x ta được:
A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)
= \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)
=x-1
thay x=99 vào đa thức A(x) ta được :
A(99)=99-1
=98
vậy tại x=99 thì giá trị của A(x)=98
bài 2:
tại x=1 thay vào đa thức P(x) ta được :
P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)
= 100+99+...+2+1
=5050
vậy tại x=1 thì giá trị của P(x)=5050