Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran thuy trang
Xem chi tiết
pham duc hiep
Xem chi tiết
KOCANBIET
Xem chi tiết
KOCANBIET
22 tháng 12 2021 lúc 20:11

giúp mình vs

 

Lấp La Lấp Lánh
22 tháng 12 2021 lúc 20:26

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow4A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}\right)=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)

\(\Rightarrow3A=4A-A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^2}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{100}}=1-\dfrac{1}{2^{100}}\)

\(\Rightarrow A=\left(1-\dfrac{1}{2^{100}}\right):3=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}< \dfrac{1}{3}\left(đpcm\right)\)

 

Vũ Chí Thái Dương
Xem chi tiết
hahaha
24 tháng 3 2017 lúc 22:45

A=1/1^2+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2

A=1+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2

A<1+(1/2^2+1/2.3+1/3/4+...+1/98.99+1/99.100) (giữ nguyên phân số 1/2^2)

A<1+ (1/4+1/2-1/3+1/3-1/4+...+1/99-1/99+1/99-1/100)

A<1+ (1/4+1/2-1/100)

Mà 1/4+1/2-1/100 <1/4+1/2=3/4

=>A<1+3/4=7/4

Vũ Chí Thái Dương
24 tháng 3 2017 lúc 22:19

x = 3- 1 - 1

x = 1

Vậy x =1

kudo shinichi
24 tháng 3 2017 lúc 22:19

1 + 1 + x = 3

 2 + x = 3

 x = 3 - 2 

x = 1

Oh my darling❤
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 10:39

Sửa đề: A=1/2^2+...+1/100^2

1/2^2<1/1*2

1/3^2<1/2*3

...

1/100^2<1/99*100

=>A<1-1/2+1/2-1/3+...+1/99-1/100

=>A<99/100<1

Nguyễn Hồng Đại
Xem chi tiết
Nguyễn Ngọc Diệp
Xem chi tiết
NGUYEN TRUNG KIEN
Xem chi tiết
Duc Loi
14 tháng 6 2019 lúc 23:02

Đặt \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=2-\frac{100}{2^{99}}+\frac{100}{2^{100}}< 2-\frac{100}{2^{100}}+\frac{100}{2^{100}}=2\)

\(\Rightarrow A< 2\Leftrightarrow\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}< 2\left(đpcm\right).\)

NGUYEN TRUNG KIEN
15 tháng 6 2019 lúc 10:38

cảm ơn nhé

tran thi phuong thao
Xem chi tiết
BLACK CAT
9 tháng 2 2019 lúc 21:12

Ta có:

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)

Vậy.......