\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow4A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}\right)=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)
\(\Rightarrow3A=4A-A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^2}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{100}}=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\left(1-\dfrac{1}{2^{100}}\right):3=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}< \dfrac{1}{3}\left(đpcm\right)\)