Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Xuân Phát
Xem chi tiết
Akai Haruma
13 tháng 12 2021 lúc 22:00

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 18:20

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

duong trannam
Xem chi tiết
nguyễn thị na
Xem chi tiết
mathonline
Xem chi tiết
mathonline
15 tháng 4 2016 lúc 20:22

Có ai làm được không. Giúp mik với ...Thanks

Vũ Diệu Linh
Xem chi tiết
Hồ Tấn Thức
Xem chi tiết
Thanh Phong Nguyễn
Xem chi tiết
Monkey.D.Luffy
8 tháng 5 2022 lúc 21:31

Em ơi,chứng minh A gì nữa em????

Monkey.D.Luffy
8 tháng 5 2022 lúc 21:55

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(A=\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot3}+\dfrac{1}{4\cdot4}+...+\dfrac{1}{50\cdot50}\)

\(A=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{50}\)

\(A=1\)

Vậy A=1

Nguyễn Quý Đôn
Xem chi tiết
Akai Haruma
21 tháng 10 2023 lúc 22:27

Lời giải:
Đặt $A=1+2^2+2^4+....+2^{100}$

$A=(1+2^2+2^4)+(2^6+2^8+2^{10})+.....+(2^{96}+2^{98}+2^{100})$

$A=(1+2^2+2^4)+2^6(1+2^2+2^4)+....+2^{96}(1+2^2+2^4)$

$=(1+2^2+2^4)(1+2^6+....+2^{96})$

$=21(1+2^6+....+2^{96})\vdots 21$ 

Ta có đpcm.