Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Trúc
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 15:05

\(a,\) Ta có AD là p/g \(\widehat{xAC}\Rightarrow\stackrel\frown{DA}=\stackrel\frown{DC}\Rightarrow\widehat{DOA}=\widehat{DOC}\)

\(\Rightarrow OD\) là p/g \(\widehat{AOC}\)

Mà \(\Delta OAC\) cân tại \(O\left(OA=OC=R\right)\) nên OD cũng là đường cao

\(\Rightarrow OD\perp AC\)

\(b,\) Đề thiếu điểm E

đặng tấn sang
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 23:03

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CA+DB=CD

Người Qua Đường
Xem chi tiết
Chanh Xanh
19 tháng 11 2021 lúc 9:58

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

phạm hoàng
Xem chi tiết
Tung Do
Xem chi tiết
trang huynh
Xem chi tiết
Nguyễn Sương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 20:03

a: Xét (O) có

OH là một phần đường kính

AB là dây

OH⊥AB tại H

Do đó: H là trung điểm của AB

Xét ΔMAB có

MH là đường trung tuyến

MH là đường cao

Do đó:ΔMAB cân tại M

Xét ΔOAM và ΔOBM có

OA=OB

AM=BM

OM chung

Do đó:ΔOAM=ΔOBM

Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)

=>ΔOMB vuông tại B

=>MB là tiếp tuyến

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó:ΔABC vuông tại A

Võ Hà Kiều My
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 21:32

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 10:42

a: góc AMB=góc ACB=90 độ

=>BM vuông góc DA và AC vuông góc DB

góc DMH+góc DCH=90+90=180 độ

=>DMHC nội tiếp

Xét ΔHMA vuông tại M và ΔHCB vuông tại C có

góc MHA=góc CHB

=>ΔHMA đồng dạng với ΔHCB

=>HM/HC=HA/HB

=>HM*HB=HA*HC

b: góc DBM=góc CBM=1/2*sđ cung CM

góc MBA=1/2*sđ cung MA

mà sđ cung CM=sđ cung MA

nên góc DBM=góc ABM

=>BM là phân giác của góc DBA

Xét ΔBDA có

BM vừa là đường cao, vừa là phân giác

=>ΔBDA cân tại B

d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có

MA=MD

góc MAK=góc MDH

=>ΔMAK=ΔMDH

=>MK=MH

Xét tứ giác AKDH có

M là trung điểm chung của AD và KH

AD vuông góc KH

=>AKDH là hình thoi