Cho B=7+73+75+77+79+...+799
a) tính B
b) Chứng minh B chia hết cho 48
Cho A = 7 + 73 + 75 + ... + 71999 Chứng minh rằng A chia hết cho 35.
A=(7+73)+(75+77)+....+(71997+71999)
A=7.(1+72)+75.(1+72)+....+71997.(1+72)
A=7.50+75.50+79.50+.....+71997.50
=>A chia hết cho 5 (1)
A=(7+73+75+....+71999)=7.(70+72+74+....+71998)
=>A chia hết cho 7 (2)
Mà ƯCLN(5;7)=1=>A chia hết cho 35
Chứng minh: \(A=36^{48}+41^{43}\) chia hết cho 77
1. Ko thực hiện phép tính hãy cho biết chữ số hàng đơn vị của mỗi :
a,12+23+34+89+91)*91*73*55+37*19
b, 123 * 235 * 347 * 459 * 561 - 71 * 73 * 75 * 77 * 79
Cho A = 7 + 72 + 73 + 74 + 75 + 76 +77 + 78 chứng tỏ tổng A chia hết cho 5. Hộ mik với ạ mik sắp thi r mà bài này cô mới gửi mik ko bt làm ai giúp mik nhanh vs ạ. C.ơn nhìu
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.40 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
không thực hiện tính hãy cho biết chữ số hàng đơn vị cho biết chữ số hàng đơn vị của biểu thức:
a) (12+23+34+.....+89+91) *91*73*55*37*19
b) 123*235*347*459*561-71*73*75*77*79
Chứng minh :
a,8^7+2^18 chia hết cho 14
b,79^2+79×11 chia hết cho 30
c,n^3+3n^2+2n chia hết cho 6
a)8^7 - 2^18 = 8.(2^18) - 2^18 = 7 . 2^18 = 14 . 2 ^17
Vì 14 luôn chia hết cho chính nó suy ra 14 . 2 ^17 cũng chia hết cho 14.
Vậy biểu thức ban đầu luôn chia hết cho 14
b)79^2+79.11=79(79+11)=79.90=79.30.3 chia hết cho 30
c)số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
Tick nha
So sánh các phân số bằng cách thuận tiện nhất
\(\dfrac{73}{75}\)và\(\dfrac{77}{79}\) \(\dfrac{53}{100}\)và\(\dfrac{47}{106}\) \(\dfrac{81}{79}\) và \(\dfrac{65}{63}\) \(\dfrac{48}{47}\) và \(\dfrac{84}{85}\)
1,
Ta có:
\(\dfrac{73}{75}=1-\dfrac{2}{75}\)
\(\dfrac{77}{79}=1-\dfrac{2}{79}\)
So sánh phân số \(\dfrac{2}{75}\) và \(\dfrac{2}{79}\)
Vì \(75< 79\) nên \(\dfrac{1}{75}>\dfrac{1}{79}\)
Vậy \(1-\dfrac{2}{75}< 1-\dfrac{2}{79}\)
Hay \(\dfrac{73}{75}< \dfrac{77}{79}\)
2,
Vì \(\dfrac{53}{100}>\dfrac{47}{100}>\dfrac{47}{106}\) nên \(\dfrac{53}{100}>\dfrac{47}{106}\)
3,
Ta có:
\(\dfrac{81}{79}=1+\dfrac{2}{79}\)
\(\dfrac{65}{63}=1+\dfrac{2}{63}\)
So sánh phân số \(\dfrac{2}{79}\) và \(\dfrac{2}{63}\)
Vì \(79>63\) nên \(\dfrac{81}{79}< \dfrac{65}{63}\)
Hay \(\Rightarrow1+\dfrac{2}{79}< 1+\dfrac{2}{63}\)
Vậy \(\dfrac{81}{79}< \dfrac{65}{63}\)
4,
\(\dfrac{48}{47}>1>\dfrac{84}{85}\)
Vậy \(\dfrac{48}{47}>\dfrac{84}{85}\)
1. Ko thực hiện phép tính hãy cho biết chữ số hàng đơn vị của mỗi :
a,(2001+2002+2003+...+2009)-(21+32+43+...+98+19)
b,12+23+34+89+91)*91*73*55+37*19
c, 123 * 235 * 347 * 459 * 561 - 71 * 73 * 75 * 77 * 79
Bài làm
a)Ta có:
Cứ cộng mỗi chữ số hàng đơn vị của mỗi số hạng trong biểu thức trong ngoặc 1 thì ta được:
1 chữ số tận cùng là 5.
Mà biểu thức trong ngoặc 2 cũng vậy. Nên, ta có: 5-5=0
Vậy chữ số hàng đơn vị của hiệu a là 0.
Bài 1: a, Chứng minh: A=21+22+23+24+...+22010 chia hết cho 3 và 7
b, Chứng minh: B=31+32+33+34+...+22010 chia hết cho 4 và 13
c, Chứng minh: C=51+52+53+54+...+52010 chia hết cho 6 và 31
d, Chứng minh: C=71+72+73+74+...+72010 chia hết cho 8 và 57
Bài 2: So sánh
a, A=20+21+22+23+...+22011 và B=22011-1
b, A=2019.2021 và B=20202
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
So sánh các phân số sau bằng cách thuận tiện.
73/75 và 77/79
53/100 và 47/100
81/79 và 65/63
48/47 và 84/85
ta có: \(\frac{73}{75}>\frac{73}{79}>\frac{77}{79}\Rightarrow\frac{73}{75}>\frac{77}{79}\)
ta có: \(\frac{53}{100}< \frac{47}{100}\)
ta có: \(\frac{48}{47}>1;\frac{84}{85}< 1\Rightarrow\frac{48}{47}>\frac{84}{85}\)