Tính giá trị của biểu thức: \(A=x^2-3x\sqrt{y}+2y\), khi \(x=\dfrac{1}{\sqrt{5}-2};y=\dfrac{1}{9+4\sqrt{5}}\)
1)Giai phương trình
a) (2\(\sqrt{x}\)+3)(\(\sqrt{x}\)-1)-5= 2x-4
b) x\(\sqrt{x}\)-8 = 3\(\sqrt{x}\) (\(\sqrt{x}\)-2)
2) Cho biểu thức: M= 2y-3x\(\sqrt{y}\) + x2
a) Phân tích M thành nhân tử
b) Tính giá trị M khi x = 2; y= \(\dfrac{18}{4+\sqrt{7}}\)
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Câu 1: a) Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức P = a + b - ab
b) Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)
Câu 2: Cho biểu thức: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-x}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\) (với x>0, x\(\ne\)1)
a) Rút gọn biểu thức P
b) Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Lời giải
a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:
P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3
b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2
Vậy nghiệm hệ phương trình (1; 2)
Có gì bạn tham khảo nha//
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
Thay x=2 vào A, ta được:
\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)
Cho biểu thức Q = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) rút gọn Q
b) Tính giá trị của Q khi x = \(4+2\sqrt{3}\)
c) Tìm các giá trị của x để Q = 3
d) Tìm các giá trị cảu x để Q > \(\dfrac{1}{2}\)
e) Tìm x \(\in\) Z để Q = Z
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)và B=\(\dfrac{3x}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)với x>0,x\(\ne\)1
1.Tính giá trị biểu thức khi A=0,09
2.Rút gọn biểu thức B và M=B:A
3.Tìm giá trị x để biểu thức M<1
1) Sửa đề: x=0,09
Thay x=0,09 vào A, ta được:
\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)
giúp mik nhanh vớiiiiii :(
cho biểu thức P.
P=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\) -\(\dfrac{10\sqrt{x}}{x-25}\)-\(\dfrac{5}{\sqrt{x}+5}\)
(x≥, x≠5)
a) rút gọn biểu thức P
b) tính giá trị P khi x=9
c) tính giá trị của x để biểu thức P=\(\dfrac{1}{2}\)
a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)
c: Để P=1/2 thì căn x-5/căn x+5=1/2
=>2 căn x-10=căn x+5
=>căn x=15
=>x=225
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1
Cho 2 biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và B\(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\) với x ≥ 0 ; x≠ 25
a) Tính giá trị biểu thức khi x = 9. Chứng minh rằng B =\(\dfrac{1}{\sqrt{x}+5}\)
b) Tìm tất cả các giá trị của x để A = B .|x-4|
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)
\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)
b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Leftrightarrow x-4=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-6=0\)
=>x=9
Cho hai biểu thức A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)và B= \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
a) Tính giá trị của A khi x= 4-\(2\sqrt{3}\)
b) Tìm x để A>0
c) Rút gọn B
d) Tìm giá trị nguyên của x để giá trị của biểu thức A: B nguyên