Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Việt Hằng
Xem chi tiết
Dai
30 tháng 1 2020 lúc 21:46

nếu B âm thì 1 trong 2 a,b phải âm

nếu C âm thì c âm

\(\Rightarrow\)A = âm * âm * dương

Khách vãng lai đã xóa
Vũ Thùy Linh
Xem chi tiết
ST
20 tháng 3 2018 lúc 6:22

1.

\(\frac{-2}{3}x^3y^4.\left(\frac{-5}{9}x^5y\right).3y^7=\left[\left(\frac{-2}{3}\right).\left(\frac{-5}{9}\right).3\right]\left(x^3y^4x^5yy^7\right)=\frac{10}{9}x^8y^{12}\ge0\)

Vậy 3 đơn thuc trên không thể có cùng gt âm (vì nếu cùng âm thì tích của chúng phải âm)

ST
20 tháng 3 2018 lúc 6:25

2.

\(A+B=7x^2-5xy+2y^7+\left(5x^2+3xy-y\right)\)

\(=7x^2-5xy+2y^7+5x^2+3xy-y\)

\(=\left(7x^2+5x^2\right)+\left(-5xy+3xy\right)+2y^7-y\)

\(=12x^2-2xy+2y^7-y\)

A-B tương tự

phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu

Cristiano Ronaldo
Xem chi tiết
Jenny Phạm
Xem chi tiết
missing you =
Xem chi tiết
Vuy năm bờ xuy
5 tháng 6 2021 lúc 2:55

\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bất đẳng thức hiển nhiên đúng

Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi  \(a=b=c\)

-Chúc bạn học tốt-

Hà Thị Minh Tú
Xem chi tiết
Mai Quốc Đạt
16 tháng 3 2018 lúc 10:22

ab-a-b-1=(a-1)(b-1)

bc-b-c-1=(b-1)(c-1)

ca-a-c-1=(c-1)(a-1)

nhân lại ta được (a-1)^2(b-1)^2(c-1)^2

do đó suy ra đầu bài

Phuocphuc 46
Xem chi tiết
tống thị quỳnh
9 tháng 4 2017 lúc 22:10

ta có ab-a-b+1=a(b-1)-(b-1)=(a-1)(b-1) (1)

tương tự bc-b-c+1=(b-1)(c-1) (2)  ; ca-c-a+1=(c-1)(a-1) (3)

từ (1),(2),(3) suy ra (ab-a-b+1)(bc-b-c+1)(ca-c-a+1)=(a-1)(b-1)(b-1)(c-1)(c-1)(a-1)=\(^{\left(a-1\right)^2}\)\(^{\left(b-1\right)^2}\)\(^{\left(c-1\right)^2}\)>=0 với mọi a;b;c

suy ra các biểu thức đã cho ko thể cùng có giá trị âm 

  mk trả lời có giif sai sót thì xin bỏ quá cho nha link cho mk nhé thanks

Nguyễn Xuân Mai
Xem chi tiết
Nghiêm Gia Phương
13 tháng 3 2017 lúc 12:46

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\) (tính chất tỉ lệ thức)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) \(\left(k\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{a-2c}{b-2d}=\dfrac{ck-2c}{dk-2d}=\dfrac{c\times\left(k-2\right)}{d\times\left(k-2\right)}=\dfrac{c}{d}\) \(\left(1\right)\)

\(\dfrac{a+2c}{b+2d}=\dfrac{ck+2c}{dk+2d}=\dfrac{c\times\left(k+2\right)}{d\times\left(k+2\right)}=\dfrac{c}{d}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{a-2c}{b-2d}=\dfrac{a+2c}{b+2d}\)

Vậy \(\dfrac{a-2c}{b-2d}=\dfrac{a+2c}{b+2d}\) \(\left(đpct\right)\).

Hoài Nguyễn
6 tháng 8 2021 lúc 16:49

a/b=a+2c/b+2d