PT bậc I' 1 ẩ
Sắp xếp :
k/ i / t/ h/ ô/ ẩ/ n / m
Đáp án:
Tin khô ẩm
Chúc bẹn học tốt
Bài 1: Cho pt x2 + 13x -1 = 0 (1). Không giải pt, hãy lập một pt bậc hai có các nghiệm y1, y2 lớn hơn nghiệm của pt (1) là 2.
Bài 2: Cho pt x2 - 5x + 6 = 0 (1). Không giải pt, hãy lập pt bậc hai có các nghiệm y1 và y2 là:
a/ Số đối các nghiệm của pt (1).
b/ Nghịch đảo các nghiệm của pt (1).
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
Cho pt \(x^2+5x-1=0\left(1\right)\)Không giải pt hãy lập pt bậc hai nhận các nghiệm là lũy thừa bậc bốn các nghiệm của pt (1)
Ta thấy pt(1) có nghiệm do ac = -1 < 0
Gọi x1 ; x2 là nghiệm của (1) , ta có : x1 + x2 = -5 ; x1x2 =-1
Gọi y1 ; y2 là các nghiệm của pt cần lập , ta được : y1 + y2 = x14 + x22 ; y1y2 = x14 . x24
Ta có : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12.x22
= [( x1 + x2 )2 - 2x1x2 ]2 - 2(x1x2)2 = 729 - 2 = 727
y1.y2 = x14 . x24 = ( x1 . x2 )4 = 1
Vậy pt cần lập là y2 - 727y + 1 = 0
\(\Delta=5^2+4=29>0\)nên phương trình có hai nghiệm phân biệt \(x_1,x_2\).
Theo Viete:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=-1\end{cases}}\)
\(x_1^4x_2^4=\left(-1\right)^4=1\)
\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left(25+2\right)^2-2=727\)
Theo định lí Viete đảo, phương trình bậc hai nhận \(x_1^4,x_2^4\)là nghiệm là:
\(X^2-727X+1=0\)
x2 + 5x - 1 = 0
Ta có: \(\Delta=5^2-4=21>0\)
=> pt có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=-5\\x_1.x_2=-1\end{cases}}\)
Gọi 2 nghiệm của phương trình cần lập là x3, x4
Theo bài ra, ta có: x3 = x14; x4 = x24
=> x3 + x4 = x14 + x24 = (x12 + x22)2 - 2x12x22 = [(x1 + x2)2 - 2x1x2]2 - 2.(-1)2 = [(-5)2 + 2]2 - 2 = 727
x3x4 = x14x24 = (-1)4 = 1
=> x3 và x4 là nghiệm của phương trình x2 - 727x + 1 = 0
Viết thuật toán cho bài toán sau :
a, Giải pt bậc nhất ax + b = 0
b, Giải pt bậc 2 : ax2+b+c=0
a)
Bước 1: Nhập a,b
Bước 2: Nếu b=0 thì viết phương trình có vô số nghiệm
Không thì viết phương trình vô nghiệm
Bước 3: Nếu a=0 thì quay lại bước 2
Không thì viết phương trình có nghiệm là x=-b/a
Bước 4: Kết thúc
b)
Bước 1: Nhập a,b,c
Bước 2: \(\Delta=b^2-4ac\)
Bước 3: Nếu \(\Delta>0\) thì viết phương trình có hai nghiệm phân biệt là: \(\frac{\left(-b-\sqrt{\Delta}\right)}{2\cdot a}\) và \(\frac{-b+\sqrt{\Delta}}{2\cdot a}\)
Bước 4: Nếu \(\Delta=0\) thì viết phương trình có nghiệm kép là: \(-\frac{b}{2\cdot a}\)
Bước 5: Nếu \(\Delta< 0\) thì viết phương trình vô nghiệm
Bước 6: Kết thúc
1. Tìm m để pt sau có nghiệm.
Căn bậc hai của[ (x^2)+x+1] -căn bậc hai của [(x^2)-x+1]=m.
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m
1. Tìm m để pt sau có nghiệm.
Căn bậc hai [(x^2)+x+1]- căn bậc hai [(x^2)-x+1]=m
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m.
Câu 1:
\(f\left(x\right)=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=m\)
Tọa độ hóa bài toán bằng cách gọi \(A\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) và \(B\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) là hai điểm cố định trên mặt phẳng tọa độ Oxy, M là điểm di động có tọa độ \(M\left(x;0\right)\)
\(\Rightarrow AM=\left|\overrightarrow{AM}\right|=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(BM=\left|\overrightarrow{BM}\right|=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(\Rightarrow f\left(x\right)=AM-BM\)
Mặt khác, theo BĐT tam giác ta luôn có
\(\left|AM-BM\right|< AB=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^2}=1\)
\(\Rightarrow\left|f\left(x\right)\right|< 1\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)
Câu 2:
ĐKXĐ: \(1\le x\le3\)
Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\ge0\)
Áp dụng BĐT Bunhiacốpxki:
\(\Rightarrow a\le\sqrt{\left(1+1\right)\left(x-1+3-x\right)}=2\sqrt{2}\)
Mặt khác
\(a^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\ge2\)
\(\Rightarrow2\le a\le3\)
Cũng từ trên ta có:
\(a^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(3-x\right)}=\frac{a^2-2}{2}=\frac{1}{2}a^2-1\)
Phương trình trở thành:
\(a-\left(\frac{1}{2}a^2-1\right)=m\)
\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\)
Xét hàm \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[2;2\sqrt{2}\right]\)
\(f'\left(a\right)=-a+1< 0\) \(\forall a\in\left[2;2\sqrt{2}\right]\)
\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left[2;2\sqrt{2}\right]\)
\(\Rightarrow f\left(2\sqrt{2}\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow-3+2\sqrt{2}\le f\left(a\right)\le1\)
Vậy:
- Nếu \(\left[{}\begin{matrix}m>1\\m< -3+2\sqrt{2}\end{matrix}\right.\) thì phương trình vô nghiệm
- Nếu \(-3+2\sqrt{2}\le m\le1\) pt có nghiệm
giải PT căn bậc hai(x+1) = 3 - căn bậc hai(x)
`sqrt{x+1}=3-sqrtx`
`đk:x>=0`
`pt<=>sqrt{x+1}+sqrtx=3`
`<=>x+1+x+2sqrt{x^2+x}=3`
`<=>2sqrt{x^2+x}=2-2x`
`<=>sqrt{x^2+x}=1-x`
`đk:x<=1`
`pt<=>x^2+x=x^2-2x+1`
`<=>3x=1`
`<=>x=1/3`
Vậy `S={1/3}`
Giải pt ( đưa về pt bậc 2 )
1. tan2x - 5tanx + 6 = 0
2. 3cos22x + 4cos2x + 1 = 0
1.
\(tan^2x-5tanx+6=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)
2.
\(3cos^22x+4cos2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm arccos\left(-\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)
Giải phương trình lượng giác sau: ( dạng pt bậc nhất theo sin và cos )
3cosx + 4sinx + 6/3cosx+ 4sinx+1 =2
Đề như vậy hả bạn: \(\frac{3cosx+4sinx+6}{3cosx+4sinx+1}=2\)