cho a,b,c,d>0, a+b+c+d=4
tìm gtnn: S=1/(a^2+1)+1/(b^2+1)+1/(c^2+1)+1/(d^2+1)
Bài 1 : cho x, y >0 và x2+y2=1. Tìm GTNN của \(P=\left(1+x\right)\cdot\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\cdot\left(1+\dfrac{1}{x}\right)\)
Bài 2 : cho a, b, c > 0. CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}>=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+a+c}+\dfrac{1}{2c+a+b}\)
Bài 3 : cho a, b, c, d >0. CMR
\(\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}>=4\)
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Bài 3:
Áp dụng BĐT Svacxo:
\(\frac{1}{a+b}+\frac{1}{c+d}\geq \frac{4}{a+b+c+d}\)
\(\Rightarrow \frac{a+c}{a+b}+\frac{a+c}{c+d}\geq \frac{4(a+c)}{a+b+c+d}(1)\)
\(\frac{1}{b+c}+\frac{1}{d+a}\geq \frac{4}{b+c+d+a}\)
\(\Rightarrow \frac{b+d}{b+c}+\frac{b+d}{d+a}\geq \frac{4(b+d)}{a+b+c+d}(2)\)
Từ \((1);(2)\Rightarrow \frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{d+b}{d+a}\geq \frac{4(a+c+b+d)}{a+b+c+d}=4\)
Dấu bằng xảy ra khi \(a=b=c=d\)
Bài 2: Cho a<b<c<d. CMR : (a+b)(c+d) < (a+c)(b+d)
Bài 3: CMR: ( ab+cd)2 =< ( a2+c2)(b2+d2)
Bài 4: Cho 0 =<x,y=<1. CMR : \(\frac{1}{x^{2^{ }}+1}\) + \(\frac{1}{y^{2^{ }}+1}\) =< \(\frac{2}{xy+1}\)
Bài 5: Cho x,y >0 và x+y=2. Tìm GTNN
a) A=1/xy b) B=1/x +1/y c) C=x2 + y2 d) D=x4 + y2
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Mn giúp e với ạ
Cho tứ giác ABCD có góc A: góc B: góc C: góc D= 1: 2: 3: 4
Tìm góc A; góc B; góc C; góc D= ?
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=72^0\\\widehat{C}=108^0\\\widehat{D}=144^0\end{matrix}\right.\)
1. Cho A=(x-y)^2 ; B=4xy; C= -(x+y)^2
Chứng minh
a) A+B+C=0
b) A^2-BC= B^2-CA= C^2-AB
2. Cho p= a+b+c+d, Q= a+b-c-d, R= a-b+c-d, S= a-b-c+d
Tính PQ(P^2+Q^2) - RS ( R^2+S^2)
3. Cho a= 11111..1 ( 2n chữ số 1) , b= 111..1 (n+1 chữ số 1), c= 66...6 (n chữ số 6)
Chứng minh a+b+c+8 là số chính phương
I don't now
or no I don't
..................
sorry
1a) \(A+B+C\)
\(=\left(x-y\right)^2+4xy-\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+4xy-\left(x^2+2xy+y^2\right)\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(4xy-2xy-2xy\right)=0\left(đpcm\right)\)
Cho a, b, c, d > 0 và a + b + c + d = 4. Tìm Min M = 1/(a^2 + 1) + 1/(b^2 + 1) + 1/(c^2 + 1) + 1/(d^2 + 1)
Cho a, b, c, d > 0 và a + b + c + d = 4. Tìm Min M = 1/(a^2 + 1) + 1/(b^2 + 1) + 1/(c^2 + 1) + 1/(d^2 + 1)
Ta có:\(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}>=1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Tương tự \(\frac{1}{b^2+1}>=1-\frac{b}{2}\)
1/(c^2+1)>=1-c/2